Deep Learning Techniques for Hand Vein Biometrics: A Comprehensive Review
- URL: http://arxiv.org/abs/2409.07128v1
- Date: Wed, 11 Sep 2024 09:25:05 GMT
- Title: Deep Learning Techniques for Hand Vein Biometrics: A Comprehensive Review
- Authors: Mustapha Hemis, Hamza Kheddar, Sami Bourouis, Nasir Saleem,
- Abstract summary: Hand vein biometrics offer unique advantages due to their high accuracy, low susceptibility to forgery, and non-intrusiveness.
The vein patterns within the hand are highly complex and distinct for each individual, making them an ideal biometric identifier.
This review paper delves into the latest advancements in deep learning techniques applied to finger vein, palm vein, and dorsal hand vein recognition.
- Score: 2.1767051069425225
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Biometric authentication has garnered significant attention as a secure and efficient method of identity verification. Among the various modalities, hand vein biometrics, including finger vein, palm vein, and dorsal hand vein recognition, offer unique advantages due to their high accuracy, low susceptibility to forgery, and non-intrusiveness. The vein patterns within the hand are highly complex and distinct for each individual, making them an ideal biometric identifier. Additionally, hand vein recognition is contactless, enhancing user convenience and hygiene compared to other modalities such as fingerprint or iris recognition. Furthermore, the veins are internally located, rendering them less susceptible to damage or alteration, thus enhancing the security and reliability of the biometric system. The combination of these factors makes hand vein biometrics a highly effective and secure method for identity verification. This review paper delves into the latest advancements in deep learning techniques applied to finger vein, palm vein, and dorsal hand vein recognition. It encompasses all essential fundamentals of hand vein biometrics, summarizes publicly available datasets, and discusses state-of-the-art metrics used for evaluating the three modes. Moreover, it provides a comprehensive overview of suggested approaches for finger, palm, dorsal, and multimodal vein techniques, offering insights into the best performance achieved, data augmentation techniques, and effective transfer learning methods, along with associated pretrained deep learning models. Additionally, the review addresses research challenges faced and outlines future directions and perspectives, encouraging researchers to enhance existing methods and propose innovative techniques.
Related papers
- Latent fingerprint enhancement for accurate minutiae detection [8.996826918574463]
We propose a novel approach that uses generative adversary networks (GANs) to redefine Latent Fingerprint Enhancement (LFE)
By directly optimising the minutiae information during the generation process, the model produces enhanced latent fingerprints that exhibit exceptional fidelity to ground-truth instances.
Our framework integrates minutiae locations and orientation fields, ensuring the preservation of both local and structural fingerprint features.
arXiv Detail & Related papers (2024-09-18T08:35:31Z) - Fusion of Minutia Cylinder Codes and Minutia Patch Embeddings for Latent Fingerprint Recognition [1.534667887016089]
We propose a fusion based local matching approach towards latent fingerprint recognition.
Proposed approach would integrate these handcrafted features with a recently proposed deep neural network embedding features in a multi-stage fusion approach.
arXiv Detail & Related papers (2024-03-24T14:29:41Z) - Biometrics Employing Neural Network [0.0]
Fingerprints, iris and retina patterns, facial recognition, hand shapes, palm prints, and voice recognition are frequently used forms of biometrics.
For systems to be effective and widely accepted, the error rate in recognition and verification must approach zero.
Artificial Neural Networks, which simulate the human brain's operations, present themselves as a promising approach.
arXiv Detail & Related papers (2024-02-01T03:59:04Z) - GazeForensics: DeepFake Detection via Gaze-guided Spatial Inconsistency
Learning [63.547321642941974]
We introduce GazeForensics, an innovative DeepFake detection method that utilizes gaze representation obtained from a 3D gaze estimation model.
Experiment results reveal that our proposed GazeForensics outperforms the current state-of-the-art methods.
arXiv Detail & Related papers (2023-11-13T04:48:33Z) - Advancing 3D finger knuckle recognition via deep feature learning [51.871256510747465]
Contactless 3D finger knuckle patterns have emerged as an effective biometric identifier due to its discriminativeness, visibility from a distance, and convenience.
Recent research has developed a deep feature collaboration network which simultaneously incorporates intermediate features from deep neural networks with multiple scales.
This paper advances this approach by investigating the possibility of learning a discriminative feature vector with the least possible dimension for representing 3D finger knuckle images.
arXiv Detail & Related papers (2023-01-07T20:55:16Z) - Fingerprint Image-Quality Estimation and its Application to
Multialgorithm Verification [56.128200319868526]
Signal-quality awareness has been found to increase recognition rates and to support decisions in multisensor environments significantly.
Here, we study the orientation tensor of fingerprint images to quantify signal impairments, such as noise, lack of structure, blur, with the help of symmetry descriptors.
The quantitative results favor quality awareness under all aspects, boosting recognition rates and fusing differently skilled experts efficiently as well as effectively.
arXiv Detail & Related papers (2022-11-24T12:17:49Z) - Facial Soft Biometrics for Recognition in the Wild: Recent Works,
Annotation, and COTS Evaluation [63.05890836038913]
We study the role of soft biometrics to enhance person recognition systems in unconstrained scenarios.
We consider two assumptions: 1) manual estimation of soft biometrics and 2) automatic estimation from two commercial off-the-shelf systems.
Experiments are carried out fusing soft biometrics with two state-of-the-art face recognition systems based on deep learning.
arXiv Detail & Related papers (2022-10-24T11:29:57Z) - Artificial Neural Networks for Finger Vein Recognition: A Survey [21.7602019087369]
Finger vein recognition is highly stable and private.
Unlike the finger vein recognition methods based on traditional machine learning, the artificial neural network technique, especially deep learning, has superior performance.
To our best knowledge, this paper is the first comprehensive survey focusing on finger vein recognition based on artificial neural networks.
arXiv Detail & Related papers (2022-08-29T02:29:07Z) - Biometrics: Trust, but Verify [49.9641823975828]
Biometric recognition has exploded into a plethora of different applications around the globe.
There are a number of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems.
arXiv Detail & Related papers (2021-05-14T03:07:25Z) - Responsible Disclosure of Generative Models Using Scalable
Fingerprinting [70.81987741132451]
Deep generative models have achieved a qualitatively new level of performance.
There are concerns on how this technology can be misused to spoof sensors, generate deep fakes, and enable misinformation at scale.
Our work enables a responsible disclosure of such state-of-the-art generative models, that allows researchers and companies to fingerprint their models.
arXiv Detail & Related papers (2020-12-16T03:51:54Z) - An Overview of Fingerprint-Based Authentication: Liveness Detection and
Beyond [0.0]
We focus on methods to detect physical liveness, defined as techniques that can be used to ensure that a living human user is attempting to authenticate on a system.
We analyze how effective these methods are at preventing attacks where a malicious entity tries to trick a fingerprint-based authentication system to accept a fake finger as a real one.
arXiv Detail & Related papers (2020-01-24T20:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.