Applying Multi-Fidelity Bayesian Optimization in Chemistry: Open Challenges and Major Considerations
- URL: http://arxiv.org/abs/2409.07190v1
- Date: Wed, 11 Sep 2024 11:22:17 GMT
- Title: Applying Multi-Fidelity Bayesian Optimization in Chemistry: Open Challenges and Major Considerations
- Authors: Edmund Judge, Mohammed Azzouzi, Austin M. Mroz, Antonio del Rio Chanona, Kim E. Jelfs,
- Abstract summary: Multi fidelity Bayesian optimization (MFBO) leverages experimental and or computational data of varying quality and resource cost to optimize towards desired maxima cost effectively.
Here, we investigate the application of MFBO to accelerate the identification of promising molecules or materials.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multi fidelity Bayesian optimization (MFBO) leverages experimental and or computational data of varying quality and resource cost to optimize towards desired maxima cost effectively. This approach is particularly attractive for chemical discovery due to MFBO's ability to integrate diverse data sources. Here, we investigate the application of MFBO to accelerate the identification of promising molecules or materials. We specifically analyze the conditions under which lower fidelity data can enhance performance compared to single-fidelity problem formulations. We address two key challenges, selecting the optimal acquisition function, understanding the impact of cost, and data fidelity correlation. We then discuss how to assess the effectiveness of MFBO for chemical discovery.
Related papers
- Optima: Optimizing Effectiveness and Efficiency for LLM-Based Multi-Agent System [75.25394449773052]
Large Language Model (LLM) based multi-agent systems (MAS) show remarkable potential in collaborative problem-solving.
Yet they still face critical challenges: low communication efficiency, poor scalability, and a lack of effective parameter-updating optimization methods.
We present Optima, a novel framework that addresses these issues by significantly enhancing both communication efficiency and task effectiveness.
arXiv Detail & Related papers (2024-10-10T17:00:06Z) - Best Practices for Multi-Fidelity Bayesian Optimization in Materials and Molecular Research [23.891927943934768]
Multi-fidelity Bayesian Optimization (MFBO) is a promising framework to speed up materials and molecular discovery.
Despite its potential use in chemical tasks, there is a lack of systematic evaluation of the many parameters playing a role in MFBO.
We provide guidelines and recommendations to decide when to use MFBO in experimental settings.
arXiv Detail & Related papers (2024-10-01T09:37:36Z) - Cost-Sensitive Multi-Fidelity Bayesian Optimization with Transfer of Learning Curve Extrapolation [55.75188191403343]
We introduce utility, which is a function predefined by each user and describes the trade-off between cost and performance of BO.
We validate our algorithm on various LC datasets and found it outperform all the previous multi-fidelity BO and transfer-BO baselines we consider.
arXiv Detail & Related papers (2024-05-28T07:38:39Z) - InfoRM: Mitigating Reward Hacking in RLHF via Information-Theoretic Reward Modeling [66.3072381478251]
Reward hacking, also termed reward overoptimization, remains a critical challenge.
We propose a framework for reward modeling, namely InfoRM, by introducing a variational information bottleneck objective.
We show that InfoRM's overoptimization detection mechanism is not only effective but also robust across a broad range of datasets.
arXiv Detail & Related papers (2024-02-14T17:49:07Z) - Physics-Aware Multifidelity Bayesian Optimization: a Generalized Formulation [0.0]
Multifidelity Bayesian methods (MFBO) allow to include costly high-fidelity responses for a sub-selection of queries only.
State-of-the-art methods rely on a purely data-driven search and do not include explicit information about the physical context.
This paper acknowledges that prior knowledge about the physical domains of engineering problems can be leveraged to accelerate these data-driven searches.
arXiv Detail & Related papers (2023-12-10T09:11:53Z) - Multi-fidelity Bayesian Optimization in Engineering Design [3.9160947065896803]
Multi-fidelity optimization (MFO) and Bayesian optimization (BO)
MF BO has found a niche in solving expensive engineering design optimization problems.
Recent developments of two essential ingredients of MF BO: GP-based MF surrogates and acquisition functions.
arXiv Detail & Related papers (2023-11-21T23:22:11Z) - Multi-Fidelity Bayesian Optimization with Unreliable Information Sources [12.509709549771385]
We propose rMFBO (robust MFBO) to make GP-based MFBO schemes robust to the addition of unreliable information sources.
We demonstrate the effectiveness of the proposed methodology on a number of numerical benchmarks.
We expect rMFBO to be particularly useful to reliably include human experts with varying knowledge within BO processes.
arXiv Detail & Related papers (2022-10-25T11:47:33Z) - Rectified Max-Value Entropy Search for Bayesian Optimization [54.26984662139516]
We develop a rectified MES acquisition function based on the notion of mutual information.
As a result, RMES shows a consistent improvement over MES in several synthetic function benchmarks and real-world optimization problems.
arXiv Detail & Related papers (2022-02-28T08:11:02Z) - Optimizing Molecules using Efficient Queries from Property Evaluations [66.66290256377376]
We propose QMO, a generic query-based molecule optimization framework.
QMO improves the desired properties of an input molecule based on efficient queries.
We show that QMO outperforms existing methods in the benchmark tasks of optimizing small organic molecules.
arXiv Detail & Related papers (2020-11-03T18:51:18Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z) - Incorporating Expert Prior Knowledge into Experimental Design via
Posterior Sampling [58.56638141701966]
Experimenters can often acquire the knowledge about the location of the global optimum.
It is unknown how to incorporate the expert prior knowledge about the global optimum into Bayesian optimization.
An efficient Bayesian optimization approach has been proposed via posterior sampling on the posterior distribution of the global optimum.
arXiv Detail & Related papers (2020-02-26T01:57:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.