Physics-Aware Multifidelity Bayesian Optimization: a Generalized Formulation
- URL: http://arxiv.org/abs/2312.05831v2
- Date: Thu, 4 Jul 2024 14:44:12 GMT
- Title: Physics-Aware Multifidelity Bayesian Optimization: a Generalized Formulation
- Authors: Francesco Di Fiore, Laura Mainini,
- Abstract summary: Multifidelity Bayesian methods (MFBO) allow to include costly high-fidelity responses for a sub-selection of queries only.
State-of-the-art methods rely on a purely data-driven search and do not include explicit information about the physical context.
This paper acknowledges that prior knowledge about the physical domains of engineering problems can be leveraged to accelerate these data-driven searches.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The adoption of high-fidelity models for many-query optimization problems is majorly limited by the significant computational cost required for their evaluation at every query. Multifidelity Bayesian methods (MFBO) allow to include costly high-fidelity responses for a sub-selection of queries only, and use fast lower-fidelity models to accelerate the optimization process. State-of-the-art methods rely on a purely data-driven search and do not include explicit information about the physical context. This paper acknowledges that prior knowledge about the physical domains of engineering problems can be leveraged to accelerate these data-driven searches, and proposes a generalized formulation for MFBO to embed a form of domain awareness during the optimization procedure. In particular, we formalize a bias as a multifidelity acquisition function that captures the physical structure of the domain. This permits to partially alleviate the data-driven search from learning the domain properties on-the-fly, and sensitively enhances the management of multiple sources of information. The method allows to efficiently include high-fidelity simulations to guide the optimization search while containing the overall computational expense. Our physics-aware multifidelity Bayesian optimization is presented and illustrated for two classes of optimization problems frequently met in science and engineering, namely design optimization and health monitoring problems.
Related papers
- Autoformulation of Mathematical Optimization Models Using LLMs [50.030647274271516]
We develop an automated approach to creating optimization models from natural language descriptions for commercial solvers.
We identify the three core challenges of autoformulation: (1) defining the vast, problem-dependent hypothesis space, (2) efficiently searching this space under uncertainty, and (3) evaluating formulation correctness.
arXiv Detail & Related papers (2024-11-03T20:41:38Z) - Diffusion Models as Network Optimizers: Explorations and Analysis [71.69869025878856]
generative diffusion models (GDMs) have emerged as a promising new approach to network optimization.
In this study, we first explore the intrinsic characteristics of generative models.
We provide a concise theoretical and intuitive demonstration of the advantages of generative models over discriminative network optimization.
arXiv Detail & Related papers (2024-11-01T09:05:47Z) - A survey and benchmark of high-dimensional Bayesian optimization of discrete sequences [12.248793682283964]
optimizing discrete black-box functions is key in several domains, e.g. protein engineering and drug design.
We develop a unified framework to test a vast array of high-dimensional Bayesian optimization methods and a collection of standardized black-box functions.
These two components of the benchmark are each supported by flexible, scalable, and easily extendable software libraries.
arXiv Detail & Related papers (2024-06-07T08:39:40Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
We show how structure can enable sample-efficient data-driven optimization.
We also present a data-driven optimization algorithm that infers the FGM structure itself.
arXiv Detail & Related papers (2024-01-08T22:33:14Z) - Multi-fidelity Bayesian Optimization in Engineering Design [3.9160947065896803]
Multi-fidelity optimization (MFO) and Bayesian optimization (BO)
MF BO has found a niche in solving expensive engineering design optimization problems.
Recent developments of two essential ingredients of MF BO: GP-based MF surrogates and acquisition functions.
arXiv Detail & Related papers (2023-11-21T23:22:11Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - Uncertainty-Aware Search Framework for Multi-Objective Bayesian
Optimization [40.40632890861706]
We consider the problem of multi-objective (MO) blackbox optimization using expensive function evaluations.
We propose a novel uncertainty-aware search framework referred to as USeMO to efficiently select the sequence of inputs for evaluation.
arXiv Detail & Related papers (2022-04-12T16:50:48Z) - Leveraging Trust for Joint Multi-Objective and Multi-Fidelity
Optimization [0.0]
This paper investigates a novel approach to Bayesian multi-objective and multi-fidelity (MOMF) optimization.
We suggest the innovative use of a trust metric to support simultaneous optimization of multiple objectives and data sources.
Our methods offer broad applicability in solving simulation problems in fields such as plasma physics and fluid dynamics.
arXiv Detail & Related papers (2021-12-27T20:55:26Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
We consider data-driven optimization problems where one must maximize a function given only queries at a fixed set of points.
This problem setting emerges in many domains where function evaluation is a complex and expensive process.
We propose a tractable approximation that allows us to scale our method to high-capacity neural network models.
arXiv Detail & Related papers (2021-02-16T06:04:27Z) - Multi-Fidelity Multi-Objective Bayesian Optimization: An Output Space
Entropy Search Approach [44.25245545568633]
We study the novel problem of blackbox optimization of multiple objectives via multi-fidelity function evaluations.
Our experiments on several synthetic and real-world benchmark problems show that MF-OSEMO, with both approximations, significantly improves over the state-of-the-art single-fidelity algorithms.
arXiv Detail & Related papers (2020-11-02T06:59:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.