Behavioral Cloning Models Reality Check for Autonomous Driving
- URL: http://arxiv.org/abs/2409.07218v1
- Date: Wed, 11 Sep 2024 12:19:38 GMT
- Title: Behavioral Cloning Models Reality Check for Autonomous Driving
- Authors: Mustafa Yildirim, Barkin Dagda, Vinal Asodia, Saber Fallah,
- Abstract summary: This paper presents the real-world validation of state-of-the-art perception systems that utilize Behavior Cloning (BC) for lateral control.
The dataset was collected using a scaled research vehicle and tested on various track setups.
Experimental results demonstrate that these methods predict steering angles with low error margins in real-time.
- Score: 5.021331908103135
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: How effective are recent advancements in autonomous vehicle perception systems when applied to real-world autonomous vehicle control? While numerous vision-based autonomous vehicle systems have been trained and evaluated in simulated environments, there is a notable lack of real-world validation for these systems. This paper addresses this gap by presenting the real-world validation of state-of-the-art perception systems that utilize Behavior Cloning (BC) for lateral control, processing raw image data to predict steering commands. The dataset was collected using a scaled research vehicle and tested on various track setups. Experimental results demonstrate that these methods predict steering angles with low error margins in real-time, indicating promising potential for real-world applications.
Related papers
- World Models for Anomaly Detection during Model-Based Reinforcement Learning Inference [3.591122855617648]
Learning-based controllers are often purposefully kept out of real-world applications due to concerns about their safety and reliability.
We explore how state-of-the-art world models in Model-Based Reinforcement Learning can be utilized beyond the training phase to ensure a deployed policy only operates within regions of the state-space it is sufficiently familiar with.
arXiv Detail & Related papers (2025-03-04T12:25:01Z) - The Role of World Models in Shaping Autonomous Driving: A Comprehensive Survey [50.62538723793247]
Driving World Model (DWM) focuses on predicting scene evolution during the driving process.
DWM methods enable autonomous driving systems to better perceive, understand, and interact with dynamic driving environments.
arXiv Detail & Related papers (2025-02-14T18:43:15Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
Scaled robotic cars are commonly equipped with a hierarchical control acthiecture that includes tasks dedicated to vehicle state estimation and control.
This paper covers both aspects by proposing (i) a federeted extended Kalman filter (FEKF) and (ii) a novel deep reinforcement learning (DRL) path tracking controller trained via an expert demonstrator.
The experimentally validated model is used for (i) supporting the design of the FEKF and (ii) serving as a digital twin for training the proposed DRL-based path tracking algorithm.
arXiv Detail & Related papers (2024-01-10T14:40:53Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - How Do We Fail? Stress Testing Perception in Autonomous Vehicles [40.19326157052966]
This paper presents a method for characterizing failures of LiDAR-based perception systems for autonomous vehicles in adverse weather conditions.
We develop a methodology based in reinforcement learning to find likely failures in object tracking and trajectory prediction due to sequences of disturbances.
arXiv Detail & Related papers (2022-03-26T20:48:09Z) - Differentiable Control Barrier Functions for Vision-based End-to-End
Autonomous Driving [100.57791628642624]
We introduce a safety guaranteed learning framework for vision-based end-to-end autonomous driving.
We design a learning system equipped with differentiable control barrier functions (dCBFs) that is trained end-to-end by gradient descent.
arXiv Detail & Related papers (2022-03-04T16:14:33Z) - VISTA 2.0: An Open, Data-driven Simulator for Multimodal Sensing and
Policy Learning for Autonomous Vehicles [131.2240621036954]
We present VISTA, an open source, data-driven simulator that integrates multiple types of sensors for autonomous vehicles.
Using high fidelity, real-world datasets, VISTA represents and simulates RGB cameras, 3D LiDAR, and event-based cameras.
We demonstrate the ability to train and test perception-to-control policies across each of the sensor types and showcase the power of this approach via deployment on a full scale autonomous vehicle.
arXiv Detail & Related papers (2021-11-23T18:58:10Z) - SimNet: Learning Reactive Self-driving Simulations from Real-world
Observations [10.035169936164504]
We present an end-to-end trainable machine learning system capable of realistically simulating driving experiences.
This can be used for the verification of self-driving system performance without relying on expensive and time-consuming road testing.
arXiv Detail & Related papers (2021-05-26T05:14:23Z) - Autonomous Vehicles that Alert Humans to Take-Over Controls: Modeling
with Real-World Data [11.007092387379076]
This study focuses on the development of contextual, semantically meaningful representations of the driver state.
We conduct a large-scale real-world controlled data study where participants are instructed to take-over control from an autonomous agent.
These take-over events are captured using multiple driver-facing cameras, which when labelled result in a dataset of control transitions and their corresponding take-over times (TOTs)
After augmenting this dataset, we develop and train TOT models that operate sequentially on low and mid-level features produced by computer vision algorithms operating on different driver-facing camera views.
arXiv Detail & Related papers (2021-04-23T09:16:53Z) - Testing the Safety of Self-driving Vehicles by Simulating Perception and
Prediction [88.0416857308144]
We propose an alternative to sensor simulation, as sensor simulation is expensive and has large domain gaps.
We directly simulate the outputs of the self-driving vehicle's perception and prediction system, enabling realistic motion planning testing.
arXiv Detail & Related papers (2020-08-13T17:20:02Z) - From Simulation to Real World Maneuver Execution using Deep
Reinforcement Learning [69.23334811890919]
Deep Reinforcement Learning has proved to be able to solve many control tasks in different fields, but the behavior of these systems is not always as expected when deployed in real-world scenarios.
This is mainly due to the lack of domain adaptation between simulated and real-world data together with the absence of distinction between train and test datasets.
We present a system based on multiple environments in which agents are trained simultaneously, evaluating the behavior of the model in different scenarios.
arXiv Detail & Related papers (2020-05-13T14:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.