論文の概要: Watchlist Challenge: 3rd Open-set Face Detection and Identification
- arxiv url: http://arxiv.org/abs/2409.07220v1
- Date: Wed, 11 Sep 2024 12:24:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-09-12 14:35:46.060375
- Title: Watchlist Challenge: 3rd Open-set Face Detection and Identification
- Title(参考訳): リストの挑戦:第3のオープンセット顔検出と識別
- Authors: Furkan Kasım, Terrance E. Boult, Rensso Mora, Bernardo Biesseck, Rafael Ribeiro, Jan Schlueter, Tomáš Repák, Rafael Henrique Vareto, David Menotti, William Robson Schwartz, Manuel Günther,
- Abstract要約: Watchlist Challengeは、現実世界の監視シナリオにおける顔の検出とオープンセットの識別に焦点を当てている。
本稿では,UnConstrained College Students データセットを用いて,参加型アルゴリズムの包括的評価を行う。
- 参考スコア(独自算出の注目度): 7.697226956434713
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the current landscape of biometrics and surveillance, the ability to accurately recognize faces in uncontrolled settings is paramount. The Watchlist Challenge addresses this critical need by focusing on face detection and open-set identification in real-world surveillance scenarios. This paper presents a comprehensive evaluation of participating algorithms, using the enhanced UnConstrained College Students (UCCS) dataset with new evaluation protocols. In total, four participants submitted four face detection and nine open-set face recognition systems. The evaluation demonstrates that while detection capabilities are generally robust, closed-set identification performance varies significantly, with models pre-trained on large-scale datasets showing superior performance. However, open-set scenarios require further improvement, especially at higher true positive identification rates, i.e., lower thresholds.
- Abstract(参考訳): バイオメトリックスと監視の現在の状況では、制御されていない設定で顔を正確に認識する能力が最重要である。
Watchlist Challengeは、現実世界の監視シナリオにおける顔の検出とオープンセットの識別に焦点を当てることで、この重要なニーズに対処する。
本稿では,UnConstrained College Students (UCCS) データセットと新たな評価プロトコルを用いて,参加型アルゴリズムの包括的評価を行う。
4人の被験者が4つの顔検出システムと9つのオープンセット顔認識システムを提出した。
評価の結果,検出能力は概して堅牢であるが,クローズド・セットの識別性能は,大規模データセット上で事前訓練されたモデルにより大きく異なることがわかった。
しかし、オープンセットシナリオは、特に高い真の正の識別率、すなわち低い閾値において、さらなる改善を必要とする。
関連論文リスト
- Improving Facial Landmark Detection Accuracy and Efficiency with Knowledge Distillation [4.779050216649159]
本稿では,知識蒸留法の開発を通じて,これらの課題に対処する新しいアプローチを提案する。
私たちの目標は、さまざまな条件下で顔のランドマークを正確に特定できるモデルを設計することです。
この手法は成功し、IEEE ICME 2024 PAIRコンペティションの参加者165人中6位に終わった。
論文 参考訳(メタデータ) (2024-04-09T05:30:58Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - Exploring Decision-based Black-box Attacks on Face Forgery Detection [53.181920529225906]
顔の偽造生成技術は鮮明な顔を生み出し、セキュリティとプライバシーに対する世間の懸念を高めている。
顔偽造検出は偽の顔の識別に成功しているが、最近の研究では顔偽造検出は敵の例に対して非常に脆弱であることが示されている。
論文 参考訳(メタデータ) (2023-10-18T14:49:54Z) - Attention Consistency Refined Masked Frequency Forgery Representation
for Generalizing Face Forgery Detection [96.539862328788]
既存の偽造検出方法は、未確認領域の真正性を決定する不満足な一般化能力に悩まされている。
ACMF(Attention Consistency Refined masked frequency forgery representation model)を提案する。
いくつかのパブリックフェイスフォージェリーデータセットの実験結果から,提案手法の性能は最先端の手法と比較して優れていることが示された。
論文 参考訳(メタデータ) (2023-07-21T08:58:49Z) - Analysis of Recent Trends in Face Recognition Systems [0.0]
クラス間の類似性とクラス内変異により、顔認識システムは、それぞれ偽マッチングと偽非マッチエラーを生成する。
近年の研究では、抽出した特徴の堅牢性向上と、認識精度を高めるための前処理アルゴリズムに焦点が当てられている。
論文 参考訳(メタデータ) (2023-04-23T18:55:45Z) - Watch Out for the Confusing Faces: Detecting Face Swapping with the
Probability Distribution of Face Identification Models [37.49012763328351]
顔識別確率分布に基づく顔交換検出手法を提案する。
IdP_FSDは、有限集合に属するスワップされた顔を検出するために特別に設計されている。
IdP_FSDは、顔交換に関わる2つの顔の同一性は、顔交換の共通性を利用する。
論文 参考訳(メタデータ) (2023-03-23T09:33:10Z) - An Efficient Method for Face Quality Assessment on the Edge [1.7188280334580197]
エッジデバイスに対する実践的なアプローチは、認識への適合性に応じて、これらのアイデンティティの検出を優先すべきである。
顔のランドマーク検出ネットワークに1つの層を付加するだけで、顔の品質スコアの回帰が提案される。
追加のコストがほとんどないため、顔の品質スコアは、この単一の層をトレーニングすることで得られる。
論文 参考訳(メタデータ) (2022-07-19T18:29:43Z) - Robust and Precise Facial Landmark Detection by Self-Calibrated Pose
Attention Network [73.56802915291917]
より堅牢で正確な顔のランドマーク検出を実現するための半教師付きフレームワークを提案する。
より効果的な顔形状制約をモデル化するために,境界対応ランドマーク強度(BALI)フィールドを提案する。
自己キャリブレーション・ポース・アテンション(SCPA)モデルは、中間的監督を強制する自己学習型目標関数を提供するように設計されている。
論文 参考訳(メタデータ) (2021-12-23T02:51:08Z) - Homogeneous Low-Resolution Face Recognition Method based Correlation
Features [3.747737951407512]
監視ビデオと画像の低解像度特徴は、高解像度の顔認識アルゴリズムが効果的な特徴情報を抽出することを困難にしている。
密集都市化の時代には、セキュリティ監視における顔認証がますます重要になるため、低解像度監視カメラが生み出す映像フレームの処理に十分な性能を発揮できるアルゴリズムを開発することが不可欠である。
本稿では,同種低分解能監視ビデオの相関特徴に基づく顔認識(CoFFaR)手法について,その理論,実験の詳細,実験結果について詳しく述べる。
論文 参考訳(メタデータ) (2021-11-25T17:11:52Z) - A Synthesis-Based Approach for Thermal-to-Visible Face Verification [105.63410428506536]
本稿では,ARL-VTFおよびTUFTSマルチスペクトル顔データセット上での最先端性能を実現するアルゴリズムを提案する。
MILAB-VTF(B)も提案する。
論文 参考訳(メタデータ) (2021-08-21T17:59:56Z) - Pre-training strategies and datasets for facial representation learning [58.8289362536262]
いくつかの顔分析タスクやデータセットに適用可能な普遍的な顔表現の探索方法を示す。
顔に適応する2つの大規模表現学習を体系的に検討する。
私たちの主な2つの発見は以下の通りです: 完全にインザワイルドな未処理データに対する教師なし事前トレーニングは一貫性を提供し、場合によっては大幅な精度向上をもたらします。
論文 参考訳(メタデータ) (2021-03-30T17:57:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。