Realizing the Nishimori transition across the error threshold for
constant-depth quantum circuits
- URL: http://arxiv.org/abs/2309.02863v2
- Date: Fri, 8 Dec 2023 13:18:52 GMT
- Title: Realizing the Nishimori transition across the error threshold for
constant-depth quantum circuits
- Authors: Edward H. Chen, Guo-Yi Zhu, Ruben Verresen, Alireza Seif, Elisa
B\"aumer, David Layden, Nathanan Tantivasadakarn, Guanyu Zhu, Sarah Sheldon,
Ashvin Vishwanath, Simon Trebst, Abhinav Kandala
- Abstract summary: We study the generation of the simplest long-range order on a 127 superconducting qubit device.
By experimentally tuning coherent and incoherent error rates, we demonstrate stability of this decoded long-range order in two spatial dimensions.
Our study exemplifies how measurement-based state preparation can be meaningfully explored on quantum processors beyond a hundred qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Preparing quantum states across many qubits is necessary to unlock the full
potential of quantum computers. However, a key challenge is to realize
efficient preparation protocols which are stable to noise and gate
imperfections. Here, using a measurement-based protocol on a 127
superconducting qubit device, we study the generation of the simplest
long-range order -- Ising order, familiar from Greenberger-Horne-Zeilinger
(GHZ) states and the repetition code -- on 54 system qubits. Our efficient
implementation of the constant-depth protocol and classical decoder shows
higher fidelities for GHZ states compared to size-dependent, unitary protocols.
By experimentally tuning coherent and incoherent error rates, we demonstrate
stability of this decoded long-range order in two spatial dimensions, up to a
critical point which corresponds to a transition belonging to the unusual
Nishimori universality class. Although in classical systems Nishimori physics
requires fine-tuning multiple parameters, here it arises as a direct result of
the Born rule for measurement probabilities -- locking the effective
temperature and disorder driving this transition. Our study exemplifies how
measurement-based state preparation can be meaningfully explored on quantum
processors beyond a hundred qubits.
Related papers
- Variational LOCC-assisted quantum circuits for long-range entangled states [1.6258326496071918]
Long-range entanglement is an important quantum resource, especially for topological orders and quantum error correction.
A promising avenue is offered by replacing some quantum resources with local operations and classical communication (LOCC)
Here, we propose a quantum-classical hybrid algorithm to find ground states of given Hamiltonians based on parameterized LOCC protocols.
arXiv Detail & Related papers (2024-09-11T14:08:33Z) - Entropy-driven entanglement forging [0.0]
We show how entropy-driven entanglement forging can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
Our findings indicate that our method, entropy-driven entanglement forging, can be used to adjust quantum simulations to the limitations of noisy intermediate-scale quantum devices.
arXiv Detail & Related papers (2024-09-06T16:54:41Z) - Retrieving non-linear features from noisy quantum states [11.289924445850328]
In this paper, we analyze the feasibility and efficiency of extracting high-order moments from noisy states.
We first show that there exists a quantum protocol capable of accomplishing this task if and only if the underlying noise channel is invertible.
Our work contributes to a deeper understanding of how quantum noise could affect high-order information extraction and provides guidance on how to tackle it.
arXiv Detail & Related papers (2023-09-20T15:28:18Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Quantum control of Rydberg atoms for mesoscopic-scale quantum state and
circuit preparation [0.0]
Individually trapped Rydberg atoms show significant promise as a platform for scalable quantum simulation.
We show that quantum control can be used to reliably generate fully connected cluster states and to simulate the error-correction encoding circuit.
arXiv Detail & Related papers (2023-02-15T19:00:01Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Interactive Protocols for Classically-Verifiable Quantum Advantage [46.093185827838035]
"Interactions" between a prover and a verifier can bridge the gap between verifiability and implementation.
We demonstrate the first implementation of an interactive quantum advantage protocol, using an ion trap quantum computer.
arXiv Detail & Related papers (2021-12-09T19:00:00Z) - Realizing Quantum Convolutional Neural Networks on a Superconducting
Quantum Processor to Recognize Quantum Phases [2.1465372441653354]
Quantum neural networks tailored to recognize specific features of quantum states by combining unitary operations, measurements and feedforward promise to require fewer measurements and to tolerate errors.
We realize a quantum convolutional neural network (QCNN) on a 7-qubit superconducting quantum processor to identify symmetry-protected topological phases of a spin model characterized by a non-zero string order parameter.
We find that, despite being composed of finite-fidelity gates itself, the QCNN recognizes the topological phase with higher fidelity than direct measurements of the string order parameter for the prepared states.
arXiv Detail & Related papers (2021-09-13T12:32:57Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
We provide the first complete characterization of sources of error in a neutral-atom quantum computer.
We develop a novel and distinctly efficient method to address the most important errors associated with the decay of atomic qubits to states outside of the computational subspace.
Our protocols can be implemented in the near-term using state-of-the-art neutral atom platforms with qubits encoded in both alkali and alkaline-earth atoms.
arXiv Detail & Related papers (2021-05-27T23:29:53Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.