Exploring User-level Gradient Inversion with a Diffusion Prior
- URL: http://arxiv.org/abs/2409.07291v1
- Date: Wed, 11 Sep 2024 14:20:47 GMT
- Title: Exploring User-level Gradient Inversion with a Diffusion Prior
- Authors: Zhuohang Li, Andrew Lowy, Jing Liu, Toshiaki Koike-Akino, Bradley Malin, Kieran Parsons, Ye Wang,
- Abstract summary: We propose a novel gradient inversion attack that applies a denoising diffusion model as a strong image prior to enhance recovery in the large batch setting.
Unlike traditional attacks, which aim to reconstruct individual samples and suffer at large batch and image sizes, our approach instead aims to recover a representative image that captures the sensitive shared semantic information corresponding to the underlying user.
- Score: 17.2657358645072
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore user-level gradient inversion as a new attack surface in distributed learning. We first investigate existing attacks on their ability to make inferences about private information beyond training data reconstruction. Motivated by the low reconstruction quality of existing methods, we propose a novel gradient inversion attack that applies a denoising diffusion model as a strong image prior in order to enhance recovery in the large batch setting. Unlike traditional attacks, which aim to reconstruct individual samples and suffer at large batch and image sizes, our approach instead aims to recover a representative image that captures the sensitive shared semantic information corresponding to the underlying user. Our experiments with face images demonstrate the ability of our methods to recover realistic facial images along with private user attributes.
Related papers
- Gradient-Guided Conditional Diffusion Models for Private Image Reconstruction: Analyzing Adversarial Impacts of Differential Privacy and Denoising [21.30726250408398]
Current gradient-based reconstruction methods struggle with high-resolution images due to computational complexity and prior knowledge requirements.
We propose two novel methods that require minimal modifications to the diffusion model's generation process and eliminate the need for prior knowledge.
We conduct a comprehensive theoretical analysis of the impact of differential privacy noise on the quality of reconstructed images, revealing the relationship among noise magnitude, the architecture of attacked models, and the attacker's reconstruction capability.
arXiv Detail & Related papers (2024-11-05T12:39:21Z) - On the Vulnerability of DeepFake Detectors to Attacks Generated by
Denoising Diffusion Models [0.5827521884806072]
We investigate the vulnerability of single-image deepfake detectors to black-box attacks created by the newest generation of generative methods.
Our experiments are run on FaceForensics++, a widely used deepfake benchmark consisting of manipulated images.
Our findings indicate that employing just a single denoising diffusion step in the reconstruction process of a deepfake can significantly reduce the likelihood of detection.
arXiv Detail & Related papers (2023-07-11T15:57:51Z) - Reconstruction Distortion of Learned Image Compression with
Imperceptible Perturbations [69.25683256447044]
We introduce an attack approach designed to effectively degrade the reconstruction quality of Learned Image Compression (LIC)
We generate adversarial examples by introducing a Frobenius norm-based loss function to maximize the discrepancy between original images and reconstructed adversarial examples.
Experiments conducted on the Kodak dataset using various LIC models demonstrate effectiveness.
arXiv Detail & Related papers (2023-06-01T20:21:05Z) - Masked Image Training for Generalizable Deep Image Denoising [53.03126421917465]
We present a novel approach to enhance the generalization performance of denoising networks.
Our method involves masking random pixels of the input image and reconstructing the missing information during training.
Our approach exhibits better generalization ability than other deep learning models and is directly applicable to real-world scenarios.
arXiv Detail & Related papers (2023-03-23T09:33:44Z) - ADIR: Adaptive Diffusion for Image Reconstruction [46.838084286784195]
We propose a conditional sampling scheme that exploits the prior learned by diffusion models.
We then combine it with a novel approach for adapting pretrained diffusion denoising networks to their input.
We show that our proposed adaptive diffusion for image reconstruction' approach achieves a significant improvement in the super-resolution, deblurring, and text-based editing tasks.
arXiv Detail & Related papers (2022-12-06T18:39:58Z) - Privacy Safe Representation Learning via Frequency Filtering Encoder [7.792424517008007]
Adversarial Representation Learning (ARL) is a common approach to train an encoder that runs on the client-side and obfuscates an image.
It is assumed, that the obfuscated image can safely be transmitted and used for the task on the server without privacy concerns.
We introduce a novel ARL method enhanced through low-pass filtering, limiting the available information amount to be encoded in the frequency domain.
arXiv Detail & Related papers (2022-08-04T06:16:13Z) - LTT-GAN: Looking Through Turbulence by Inverting GANs [86.25869403782957]
We propose the first turbulence mitigation method that makes use of visual priors encapsulated by a well-trained GAN.
Based on the visual priors, we propose to learn to preserve the identity of restored images on a periodic contextual distance.
Our method significantly outperforms prior art in both the visual quality and face verification accuracy of restored results.
arXiv Detail & Related papers (2021-12-04T16:42:13Z) - Deep Reparametrization of Multi-Frame Super-Resolution and Denoising [167.42453826365434]
We propose a deep reparametrization of the maximum a posteriori formulation commonly employed in multi-frame image restoration tasks.
Our approach is derived by introducing a learned error metric and a latent representation of the target image.
We validate our approach through comprehensive experiments on burst denoising and burst super-resolution datasets.
arXiv Detail & Related papers (2021-08-18T17:57:02Z) - Using Deep Image Priors to Generate Counterfactual Explanations [38.62513524757573]
A deep image prior (DIP) can be used to obtain pre-images from latent representation encodings.
We propose a novel regularization strategy based on an auxiliary loss estimator jointly trained with the predictor.
arXiv Detail & Related papers (2020-10-22T20:40:44Z) - Face Anti-Spoofing Via Disentangled Representation Learning [90.90512800361742]
Face anti-spoofing is crucial to security of face recognition systems.
We propose a novel perspective of face anti-spoofing that disentangles the liveness features and content features from images.
arXiv Detail & Related papers (2020-08-19T03:54:23Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.