論文の概要: Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization
- arxiv url: http://arxiv.org/abs/2409.07335v1
- Date: Wed, 11 Sep 2024 15:16:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-12 14:03:35.662121
- Title: Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization
- Title(参考訳): Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization
- Authors: Mehrdad Zakershahrak, Samira Ghodratnama,
- Abstract要約: 本稿では,言語モデルにおける弱強一般化によるモデルアライメントの新たなアプローチを提案する。
このファシリテーションに基づくアプローチは、モデルの性能を高めるだけでなく、モデルアライメントの性質に関する洞察も提供することを示唆している。
- 参考スコア(独自算出の注目度): 0.6629765271909505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancement of artificial intelligence systems has brought the challenge of AI alignment to the forefront of research, particularly in complex decision-making and task execution. As these systems surpass human-level performance in sophisticated problems, ensuring their alignment with human values, intentions, and ethical guidelines becomes crucial. Building on previous work in explanation generation for human-agent alignment, we address the more complex dynamics of multi-agent systems and human-AI teams. This paper introduces a novel approach to model alignment through weak-to-strong generalization in the context of language models. We present a framework where a strong model facilitates the improvement of a weaker model, bridging the gap between explanation generation and model alignment. Our method, formalized as a facilitation function, allows for the transfer of capabilities from advanced models to less capable ones without direct access to extensive training data. Our results suggest that this facilitation-based approach not only enhances model performance but also provides insights into the nature of model alignment and the potential for scalable oversight of AI systems.
- Abstract(参考訳): 人工知能システムの急速な進歩は、特に複雑な意思決定とタスク実行において、研究の最前線にAIアライメントの課題をもたらした。
これらのシステムは、高度な問題における人間レベルのパフォーマンスを上回るため、人的価値、意図、倫理的ガイドラインとの整合性を確保することが重要である。
人-エージェントアライメントのための説明生成に関するこれまでの研究に基づいて、マルチエージェントシステムと人間-AIチームのより複雑なダイナミクスに対処する。
本稿では,言語モデルにおける弱強一般化によるモデルアライメントの新たなアプローチを提案する。
本稿では,弱いモデルの改善を促進し,説明生成とモデルアライメントのギャップを埋める枠組みを提案する。
ファシリテーション関数として形式化された本手法は,広範囲なトレーニングデータに直接アクセスすることなく,高度なモデルから低能力モデルへの機能移行を可能にする。
このファシリテーションに基づくアプローチは、モデルの性能を高めるだけでなく、モデルアライメントの性質や、AIシステムのスケーラブルな監視の可能性についての洞察も提供することを示唆している。
関連論文リスト
- Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
我々は、より実用的な方法でエンパワーメントを計算するアルゴリズムであるLatent-Predictive Empowerment(LPE)を提案する。
LPEは、スキルと国家間の相互情報の原則的な置き換えである目的を最大化することで、大きなスキルセットを学習する。
論文 参考訳(メタデータ) (2024-10-15T00:41:18Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Seeing Eye to AI: Human Alignment via Gaze-Based Response Rewards for Large Language Models [46.09562860220433]
暗黙のフィードバック(特に眼球追跡(ET)データ)をReward Model(RM)に統合する新しいフレームワークであるGazeRewardを紹介します。
提案手法は、確立された人間の嗜好データセット上でのRMの精度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-10-02T13:24:56Z) - Explainability Paths for Sustained Artistic Practice with AI [0.0]
本研究は,生成型音声モデルの訓練と実装における研究成果から,説明可能性を向上させるためのいくつかの道を探究する。
我々は、トレーニング材料よりも人事機関、小規模データセットの生存可能性、反復的創造プロセスの促進、マッピングツールとしての対話型機械学習の統合を強調した。
重要なことは、これらのステップは、モデル推論中だけでなく、モデルのトレーニングフェーズ中だけでなく、トレーニングデータをキュレートおよび前処理する際にも、生成AIシステムよりも人的エージェンシーを強化することを目的としている。
論文 参考訳(メタデータ) (2024-07-21T16:48:14Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Unleashing the potential of prompt engineering in Large Language Models: a comprehensive review [1.6006550105523192]
大規模言語モデル(LLM)の能力を解き放つ上で,迅速なエンジニアリングが果たす重要な役割を概観する
自己整合性、思考の連鎖、そして生成された知識などの技術を含む、素早い工学の基礎的方法論と先進的な方法論の両方を検査する。
レビューはまた、AI能力の進歩におけるエンジニアリングの急進的な役割を反映し、将来の研究と応用のための構造化されたフレームワークを提供する。
論文 参考訳(メタデータ) (2023-10-23T09:15:18Z) - SALMON: Self-Alignment with Instructable Reward Models [80.83323636730341]
本稿では,基本言語モデルと人間の監督を最小限に整合させる新しいアプローチ,すなわちSALMONを提案する。
私たちはDromedary-2という名のAIアシスタントを開発しており、コンテキスト内学習には6つの例と31の人間定義原則しかありません。
論文 参考訳(メタデータ) (2023-10-09T17:56:53Z) - Generative Agent-Based Modeling: Unveiling Social System Dynamics
through Coupling Mechanistic Models with Generative Artificial Intelligence [0.5898893619901381]
生成人工知能を用いた社会システムのフィードバックに富む計算モデルを構築する新たな機会について論じる。
GABM(Generative Agent-Based Models)と呼ばれるこのモデルでは、ChatGPTのような大きな言語モデルを用いて、社会的環境における人間の意思決定を表現している。
本研究では,人的相互作用の力学モデルと事前学習された大規模言語モデルとを結合することにより,人間の行動がシミュレーションモデルに組み込むことができるGABMケースを提案する。
論文 参考訳(メタデータ) (2023-09-20T16:43:05Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Model-based Meta Reinforcement Learning using Graph Structured Surrogate
Models [40.08137765886609]
グラフ構造化サーロゲートモデル (GSSM) と呼ばれるモデルが, 環境ダイナミクス予測における最先端の手法を上回っていることを示した。
当社のアプローチでは,テスト時間ポリシの勾配最適化を回避して,デプロイメント中の高速実行を実現しつつ,高いリターンを得ることができる。
論文 参考訳(メタデータ) (2021-02-16T17:21:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。