論文の概要: Generative Agent-Based Modeling: Unveiling Social System Dynamics
through Coupling Mechanistic Models with Generative Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2309.11456v1
- Date: Wed, 20 Sep 2023 16:43:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-21 15:32:19.814329
- Title: Generative Agent-Based Modeling: Unveiling Social System Dynamics
through Coupling Mechanistic Models with Generative Artificial Intelligence
- Title(参考訳): 生成エージェントに基づくモデリング: 機械モデルと生成型人工知能の結合による社会システムダイナミクスの披露
- Authors: Navid Ghaffarzadegan, Aritra Majumdar, Ross Williams, Niyousha
Hosseinichimeh
- Abstract要約: 生成人工知能を用いた社会システムのフィードバックに富む計算モデルを構築する新たな機会について論じる。
GABM(Generative Agent-Based Models)と呼ばれるこのモデルでは、ChatGPTのような大きな言語モデルを用いて、社会的環境における人間の意思決定を表現している。
本研究では,人的相互作用の力学モデルと事前学習された大規模言語モデルとを結合することにより,人間の行動がシミュレーションモデルに組み込むことができるGABMケースを提案する。
- 参考スコア(独自算出の注目度): 0.5898893619901381
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We discuss the emerging new opportunity for building feedback-rich
computational models of social systems using generative artificial
intelligence. Referred to as Generative Agent-Based Models (GABMs), such
individual-level models utilize large language models such as ChatGPT to
represent human decision-making in social settings. We provide a GABM case in
which human behavior can be incorporated in simulation models by coupling a
mechanistic model of human interactions with a pre-trained large language
model. This is achieved by introducing a simple GABM of social norm diffusion
in an organization. For educational purposes, the model is intentionally kept
simple. We examine a wide range of scenarios and the sensitivity of the results
to several changes in the prompt. We hope the article and the model serve as a
guide for building useful diffusion models that include realistic human
reasoning and decision-making.
- Abstract(参考訳): 生成人工知能を用いた社会システムのフィードバックに富む計算モデルを構築する新たな機会について論じる。
GABM(Generative Agent-Based Models)と呼ばれる個々のレベルモデルは、ChatGPTのような大きな言語モデルを使用して、社会的環境における人間の意思決定を表現する。
人的相互作用の力学モデルと事前訓練された大規模言語モデルとを結合することにより,人間の行動がシミュレーションモデルに組み込むことができるGABMケースを提供する。
これは、組織に社会規範拡散の単純なGABMを導入することで達成される。
教育目的のために、モデルは意図的にシンプルに保たれている。
本研究は,様々なシナリオと結果の感度を,プロンプトの変化について検討する。
記事とモデルが、現実的な推論と意思決定を含む有用な拡散モデルを構築するためのガイドになることを願っている。
関連論文リスト
- Explanation, Debate, Align: A Weak-to-Strong Framework for Language Model Generalization [0.6629765271909505]
本稿では,言語モデルにおける弱強一般化によるモデルアライメントの新たなアプローチを提案する。
このファシリテーションに基づくアプローチは、モデルの性能を高めるだけでなく、モデルアライメントの性質に関する洞察も提供することを示唆している。
論文 参考訳(メタデータ) (2024-09-11T15:16:25Z) - Deep Generative Models in Robotics: A Survey on Learning from Multimodal Demonstrations [52.11801730860999]
近年、ロボット学習コミュニティは、大規模なデータセットの複雑さを捉えるために、深層生成モデルを使うことへの関心が高まっている。
本稿では,エネルギーベースモデル,拡散モデル,アクションバリューマップ,生成的敵ネットワークなど,コミュニティが探求してきたさまざまなモデルについて述べる。
また,情報生成から軌道生成,コスト学習に至るまで,深層生成モデルを用いた様々なアプリケーションについて述べる。
論文 参考訳(メタデータ) (2024-08-08T11:34:31Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - LVLM-Interpret: An Interpretability Tool for Large Vision-Language Models [50.259006481656094]
本稿では,大規模視覚言語モデルの内部メカニズムの理解を目的とした対話型アプリケーションを提案する。
このインタフェースは, 画像パッチの解釈可能性を高めるために設計されており, 応答の生成に有効である。
本稿では,一般的な大規模マルチモーダルモデルであるLLaVAにおける障害機構の理解に,アプリケーションがどのように役立つかのケーススタディを示す。
論文 参考訳(メタデータ) (2024-04-03T23:57:34Z) - Large Language Models Empowered Agent-based Modeling and Simulation: A
Survey and Perspectives [35.04018349811483]
大きな言語モデルをエージェントベースのモデリングとシミュレーションに統合することは、シミュレーション能力を向上するための有望な道を示す。
まず,エージェントベースモデリングとシミュレーション,および大規模言語モデル駆動エージェントの背景を紹介する。
最も重要なことは、複数のシナリオにおける大規模言語モデルを利用したエージェントベースのモデリングとシミュレーションの最近の研究の概要を包括的に示すことである。
論文 参考訳(メタデータ) (2023-12-19T09:06:45Z) - Foundation Models for Decision Making: Problems, Methods, and
Opportunities [124.79381732197649]
大規模に多様なデータに基づいて事前訓練された基礎モデルは、幅広いビジョンと言語タスクにおいて異常な能力を示してきた。
ファンデーションモデルをトレーニングし、他のエージェントと対話し、長期的な推論を行うための新しいパラダイムが生まれている。
基礎モデルと意思決定の交わりにおける研究は、強力な新しいシステムを作るための大きな約束である。
論文 参考訳(メタデータ) (2023-03-07T18:44:07Z) - Imitating Human Behaviour with Diffusion Models [25.55215280101109]
拡散モデルはテキスト・ツー・イメージ領域において強力な生成モデルとして出現している。
本稿では, 連続した環境下での人間の行動を模倣する観察行動モデルとしての利用について検討する。
論文 参考訳(メタデータ) (2023-01-25T16:31:05Z) - Mimetic Models: Ethical Implications of AI that Acts Like You [5.843033621853535]
人工知能研究における新たなテーマは、特定の人々の決定と振る舞いをシミュレートするモデルの作成である。
われわれは, 倫理的, 社会的問題に対処するための枠組みを構築した。
論文 参考訳(メタデータ) (2022-07-19T16:41:36Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z) - Simulation of emergence in artificial societies: a practical model-based
approach with the EB-DEVS formalism [0.11470070927586014]
本稿では,創発特性のモデリング,シミュレーション,ライブ識別に適した新しいフォーマリズムであるEB-DEVSを適用する。
この研究は、コミュニケーション構造をモデル化するためのアプローチの簡潔さとコンパクトさに関するケーススタディ駆動の証拠を提供する。
論文 参考訳(メタデータ) (2021-10-15T15:55:16Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
我々は、機械学習にインスパイアされたモデルと物理モデルを組み合わせた、新しいハイブリッドモデリングアプローチの概要を述べる。
このようなモデルをリアルタイム診断に利用しています。
論文 参考訳(メタデータ) (2020-03-04T00:44:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。