SoK: Security and Privacy Risks of Medical AI
- URL: http://arxiv.org/abs/2409.07415v1
- Date: Wed, 11 Sep 2024 16:59:58 GMT
- Title: SoK: Security and Privacy Risks of Medical AI
- Authors: Yuanhaur Chang, Han Liu, Evin Jaff, Chenyang Lu, Ning Zhang,
- Abstract summary: The integration of technology and healthcare has ushered in a new era where software systems, powered by artificial intelligence and machine learning, have become essential components of medical products and services.
This paper explores the security and privacy threats posed by AI/ML applications in healthcare.
- Score: 14.592921477833848
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The integration of technology and healthcare has ushered in a new era where software systems, powered by artificial intelligence and machine learning, have become essential components of medical products and services. While these advancements hold great promise for enhancing patient care and healthcare delivery efficiency, they also expose sensitive medical data and system integrity to potential cyberattacks. This paper explores the security and privacy threats posed by AI/ML applications in healthcare. Through a thorough examination of existing research across a range of medical domains, we have identified significant gaps in understanding the adversarial attacks targeting medical AI systems. By outlining specific adversarial threat models for medical settings and identifying vulnerable application domains, we lay the groundwork for future research that investigates the security and resilience of AI-driven medical systems. Through our analysis of different threat models and feasibility studies on adversarial attacks in different medical domains, we provide compelling insights into the pressing need for cybersecurity research in the rapidly evolving field of AI healthcare technology.
Related papers
- Towards AI-enabled Cyber Threat Assessment in the Health Sector [0.0]
The aim of this project is to introduce an AI-enabled platform that collects security relevant information from the outside of a health organization.
The platform delivers a risk score and supports decision makers in healthcare institutions to optimize investment choices for security measures.
arXiv Detail & Related papers (2024-09-19T13:34:34Z) - Safety challenges of AI in medicine [23.817939398729955]
Review examines potential risks in AI practices that may compromise safety in medicine.
Examines reduced performance across diverse populations, inconsistent operational stability, the need for high-quality data for effective model tuning, and the risk of data breaches during model development and deployment.
Second part of this article explores safety issues specific to large language models (LLMs) in medical contexts.
arXiv Detail & Related papers (2024-09-11T13:47:47Z) - Testing autonomous vehicles and AI: perspectives and challenges from cybersecurity, transparency, robustness and fairness [53.91018508439669]
The study explores the complexities of integrating Artificial Intelligence into Autonomous Vehicles (AVs)
It examines the challenges introduced by AI components and the impact on testing procedures.
The paper identifies significant challenges and suggests future directions for research and development of AI in AV technology.
arXiv Detail & Related papers (2024-02-21T08:29:42Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - The Security and Privacy of Mobile Edge Computing: An Artificial Intelligence Perspective [64.36680481458868]
Mobile Edge Computing (MEC) is a new computing paradigm that enables cloud computing and information technology (IT) services to be delivered at the network's edge.
This paper provides a survey of security and privacy in MEC from the perspective of Artificial Intelligence (AI)
We focus on new security and privacy issues, as well as potential solutions from the viewpoints of AI.
arXiv Detail & Related papers (2024-01-03T07:47:22Z) - Progression and Challenges of IoT in Healthcare: A Short Review [0.0]
The burgeoning field of smart healthcare is poised to generate substantial revenue in the foreseeable future.
Numerous nations have strategically deployed the Internet of Medical Things (IoMT) alongside other measures to combat the propagation of COVID-19.
The rapid and extensive adoption of IoMT worldwide has magnified issues related to security and privacy.
arXiv Detail & Related papers (2023-11-11T08:38:04Z) - White paper on cybersecurity in the healthcare sector. The HEIR solution [1.3717071154980571]
Patient data, including medical records and financial information, are at risk, potentially leading to identity theft and patient safety concerns.
The HEIR project offers a comprehensive cybersecurity approach, promoting security features from various regulatory frameworks.
These measures aim to enhance digital health security and protect sensitive patient data while facilitating secure data access and privacy-aware techniques.
arXiv Detail & Related papers (2023-10-16T07:27:57Z) - FUTURE-AI: International consensus guideline for trustworthy and deployable artificial intelligence in healthcare [73.78776682247187]
Concerns have been raised about the technical, clinical, ethical and legal risks associated with medical AI.
This work describes the FUTURE-AI guideline as the first international consensus framework for guiding the development and deployment of trustworthy AI tools in healthcare.
arXiv Detail & Related papers (2023-08-11T10:49:05Z) - Edge Intelligence for Empowering IoT-based Healthcare Systems [42.909808437026136]
This article highlights the benefits of edge intelligent technology, along with AI in smart healthcare systems.
A novel smart healthcare model is proposed to boost the utilization of AI and edge technology in smart healthcare systems.
arXiv Detail & Related papers (2021-03-22T19:35:06Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
This paper summarizes the latest research on adversarial attacks against security solutions based on machine learning techniques.
It is the first to discuss the unique challenges of implementing end-to-end adversarial attacks in the cyber security domain.
arXiv Detail & Related papers (2020-07-05T18:22:40Z) - Artificial intelligence in medicine and healthcare: a review and
classification of current and near-future applications and their ethical and
social Impact [0.0]
This work is based on an analysis of the state of the art of research and technology, including existing software, personal monitoring devices, genetic tests and editing tools, personalized digital models, online platforms, augmented reality devices, and surgical and companion robotics.
Motivated by our review, we present and describe the notion of 'extended personalized medicine'
We study the transformations of the roles of doctors and patients in an age of ubiquitous information, identify the risk of a division of Medicine into 'fake-based', 'patient-generated', and'scientifically tailored', and draw the attention of some aspects that need further thorough analysis
arXiv Detail & Related papers (2020-01-22T15:39:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.