Artificial intelligence in medicine and healthcare: a review and
classification of current and near-future applications and their ethical and
social Impact
- URL: http://arxiv.org/abs/2001.09778v2
- Date: Thu, 6 Feb 2020 14:46:51 GMT
- Title: Artificial intelligence in medicine and healthcare: a review and
classification of current and near-future applications and their ethical and
social Impact
- Authors: Emilio G\'omez-Gonz\'alez, Emilia Gomez, Javier M\'arquez-Rivas,
Manuel Guerrero-Claro, Isabel Fern\'andez-Lizaranzu, Mar\'ia Isabel
Relimpio-L\'opez, Manuel E. Dorado, Mar\'ia Jos\'e Mayorga-Buiza, Guillermo
Izquierdo-Ayuso, Luis Capit\'an-Morales
- Abstract summary: This work is based on an analysis of the state of the art of research and technology, including existing software, personal monitoring devices, genetic tests and editing tools, personalized digital models, online platforms, augmented reality devices, and surgical and companion robotics.
Motivated by our review, we present and describe the notion of 'extended personalized medicine'
We study the transformations of the roles of doctors and patients in an age of ubiquitous information, identify the risk of a division of Medicine into 'fake-based', 'patient-generated', and'scientifically tailored', and draw the attention of some aspects that need further thorough analysis
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper provides an overview of the current and near-future applications
of Artificial Intelligence (AI) in Medicine and Health Care and presents a
classification according to their ethical and societal aspects, potential
benefits and pitfalls, and issues that can be considered controversial and are
not deeply discussed in the literature.
This work is based on an analysis of the state of the art of research and
technology, including existing software, personal monitoring devices, genetic
tests and editing tools, personalized digital models, online platforms,
augmented reality devices, and surgical and companion robotics. Motivated by
our review, we present and describe the notion of 'extended personalized
medicine', we then review existing applications of AI in medicine and
healthcare and explore the public perception of medical AI systems, and how
they show, simultaneously, extraordinary opportunities and drawbacks that even
question fundamental medical concepts. Many of these topics coincide with
urgent priorities recently defined by the World Health Organization for the
coming decade. In addition, we study the transformations of the roles of
doctors and patients in an age of ubiquitous information, identify the risk of
a division of Medicine into 'fake-based', 'patient-generated', and
'scientifically tailored', and draw the attention of some aspects that need
further thorough analysis and public debate.
Related papers
- SoK: Security and Privacy Risks of Medical AI [14.592921477833848]
The integration of technology and healthcare has ushered in a new era where software systems, powered by artificial intelligence and machine learning, have become essential components of medical products and services.
This paper explores the security and privacy threats posed by AI/ML applications in healthcare.
arXiv Detail & Related papers (2024-09-11T16:59:58Z) - Applications of Generative AI in Healthcare: algorithmic, ethical, legal and societal considerations [0.0]
Generative AI is rapidly transforming medical imaging and text analysis.
This paper explores issues of accuracy, informed consent, data privacy, and algorithmic limitations.
We aim to foster a roadmap for ethical and responsible implementation of generative AI in healthcare.
arXiv Detail & Related papers (2024-06-15T13:28:07Z) - Explainable AI for Mental Disorder Detection via Social Media: A survey and outlook [0.7689629183085726]
We conduct a thorough survey to explore the intersection of data science, artificial intelligence, and mental healthcare.
A significant portion of the population actively engages in online social media platforms, creating a vast repository of personal data.
The paper navigates through traditional diagnostic methods, state-of-the-art data- and AI-driven research studies, and the emergence of explainable AI (XAI) models for mental healthcare.
arXiv Detail & Related papers (2024-06-10T02:51:16Z) - A Comprehensive Review of Generative AI in Healthcare [0.0]
generative AI models, specifically transformers and diffusion models, have played a crucial role in analyzing diverse forms of data.
These models have played a crucial role in analyzing diverse forms of data, including medical imaging, protein structure prediction, clinical documentation, diagnostic assistance, radiology interpretation, clinical decision support, medical coding, and billing.
This review paper aims to offer a thorough overview of the generative AI applications in healthcare, focusing on transformers and diffusion models.
arXiv Detail & Related papers (2023-10-01T21:13:14Z) - Artificial General Intelligence for Medical Imaging Analysis [92.3940918983821]
Large-scale Artificial General Intelligence (AGI) models have achieved unprecedented success in a variety of general domain tasks.
These models face notable challenges arising from the medical field's inherent complexities and unique characteristics.
This review aims to offer insights into the future implications of AGI in medical imaging, healthcare, and beyond.
arXiv Detail & Related papers (2023-06-08T18:04:13Z) - HEAR4Health: A blueprint for making computer audition a staple of modern
healthcare [89.8799665638295]
Recent years have seen a rapid increase in digital medicine research in an attempt to transform traditional healthcare systems.
Computer audition can be seen to be lagging behind, at least in terms of commercial interest.
We categorise the advances needed in four key pillars: Hear, corresponding to the cornerstone technologies needed to analyse auditory signals in real-life conditions; Earlier, for the advances needed in computational and data efficiency; Attentively, for accounting to individual differences and handling the longitudinal nature of medical data.
arXiv Detail & Related papers (2023-01-25T09:25:08Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
The benefits, challenges and drawbacks of AI in this field are reviewed.
The use of data augmentation, explainable AI, and the integration of AI with traditional experimental methods are also discussed.
arXiv Detail & Related papers (2022-12-08T23:23:39Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - Smart Healthcare in the Age of AI: Recent Advances, Challenges, and
Future Prospects [3.3336265497547126]
The smart healthcare system is a topic of recently growing interest and has become increasingly required due to major developments in modern technologies.
This paper is aimed to discuss the current state-of-the-art smart healthcare systems highlighting major areas like wearable and smartphone devices for health monitoring, machine learning for disease diagnosis, and the assistive frameworks, including social robots developed for the ambient assisted living environment.
arXiv Detail & Related papers (2021-06-24T05:10:47Z) - Intelligent interactive technologies for mental health and well-being [70.1586005070678]
The paper critically analyzes existing solutions with the outlooks for their future.
In particular, we:.
give an overview of the technology for mental health,.
critically analyze the technology against the proposed criteria, and.
provide the design outlooks for these technologies.
arXiv Detail & Related papers (2021-05-11T19:04:21Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.