論文の概要: EEG-Language Modeling for Pathology Detection
- arxiv url: http://arxiv.org/abs/2409.07480v1
- Date: Mon, 2 Sep 2024 10:03:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-15 05:01:16.815381
- Title: EEG-Language Modeling for Pathology Detection
- Title(参考訳): 病理診断のための脳波言語モデル
- Authors: Sam Gijsen, Kerstin Ritter,
- Abstract要約: 本研究は臨床報告に基づく脳波モデルの先駆者であり,脳波は15,000である。
以上の結果から,よりリッチな表現をさまざまなレポートセグメントに公開することで,モデルが学習できることが示唆された。
EEG言語モデルの表現は、脳波のみのモデルと比較して、病理診断を大幅に改善することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multimodal language modeling constitutes a recent breakthrough which leverages advances in large language models to pretrain capable multimodal models. The integration of natural language during pretraining has been shown to significantly improve learned representations, particularly in computer vision. However, the efficacy of multimodal language modeling in the realm of functional brain data, specifically for advancing pathology detection, remains unexplored. This study pioneers EEG-language models trained on clinical reports and 15000 EEGs. We extend methods for multimodal alignment to this novel domain and investigate which textual information in reports is useful for training EEG-language models. Our results indicate that models learn richer representations from being exposed to a variety of report segments, including the patient's clinical history, description of the EEG, and the physician's interpretation. Compared to models exposed to narrower clinical text information, we find such models to retrieve EEGs based on clinical reports (and vice versa) with substantially higher accuracy. Yet, this is only observed when using a contrastive learning approach. Particularly in regimes with few annotations, we observe that representations of EEG-language models can significantly improve pathology detection compared to those of EEG-only models, as demonstrated by both zero-shot classification and linear probes. In sum, these results highlight the potential of integrating brain activity data with clinical text, suggesting that EEG-language models represent significant progress for clinical applications.
- Abstract(参考訳): マルチモーダル言語モデリングは、大規模言語モデルの進歩を活用して、有能なマルチモーダルモデルを事前訓練する最近のブレークスルーを構成する。
事前学習中の自然言語の統合は、特にコンピュータビジョンにおいて、学習された表現を大幅に改善することが示されている。
しかし、機能的脳データ領域における多モーダル言語モデリングの有効性、特に病理診断の進歩は未解明のままである。
本研究は臨床報告に基づく脳波モデルの先駆者であり,脳波は15,000である。
我々は,この新たな領域にマルチモーダルアライメントを行う手法を拡張し,脳波言語モデルのトレーニングに有用なレポート中のテキスト情報について検討する。
以上の結果から,患者の臨床経過,脳波の描写,医師の解釈など,さまざまな報告セグメントに曝露されることから,モデルがより豊かな表現を学習できることが示唆された。
より狭い臨床テキスト情報に曝露されたモデルと比較して,臨床報告に基づいて脳波を検索するモデルが(その逆も)極めて高い精度で見つかる。
しかし、これは対照的な学習アプローチを使用する場合にのみ観察される。
特にアノテーションの少ないレギュレーションでは、ゼロショット分類と線形プローブの両方で示されるように、脳波言語モデルの表現は、脳波のみのモデルと比較して、病理診断を大幅に改善することができる。
これらの結果は,脳活動データと臨床テキストの統合の可能性を強調し,脳波言語モデルが臨床応用の大きな進展を示すことを示唆している。
関連論文リスト
- A generative framework to bridge data-driven models and scientific theories in language neuroscience [84.76462599023802]
脳内の言語選択性の簡潔な説明を生成するためのフレームワークである生成的説明媒介バリデーションを提案する。
本研究では,説明精度が基礎となる統計モデルの予測力と安定性と密接に関連していることを示す。
論文 参考訳(メタデータ) (2024-10-01T15:57:48Z) - TRRG: Towards Truthful Radiology Report Generation With Cross-modal Disease Clue Enhanced Large Language Model [22.305034251561835]
そこで我々は,大規模言語モデルへのクロスモーダル病ヒントインジェクションの段階的訓練に基づく,真正な放射線学レポート生成フレームワークTRRGを提案する。
提案フレームワークは,IU-XrayやMIMIC-CXRなどのデータセットを用いた放射線学レポート生成において,最先端の性能を実現する。
論文 参考訳(メタデータ) (2024-08-22T05:52:27Z) - CXR-Agent: Vision-language models for chest X-ray interpretation with uncertainty aware radiology reporting [0.0]
胸部X線解釈のための基礎的視覚言語モデルとして, 一般に公開されている技術の現状を評価した。
視覚言語モデルは、しばしば自信のある言語と幻覚し、臨床解釈を遅くする。
我々は,CheXagentの線形プローブとBioViL-Tのフレーズグラウンドティングツールを用いて,エージェントベースの視覚言語によるレポート生成手法を開発した。
論文 参考訳(メタデータ) (2024-07-11T18:39:19Z) - Potential of Multimodal Large Language Models for Data Mining of Medical Images and Free-text Reports [51.45762396192655]
特にGemini-Vision-Series (Gemini) と GPT-4-Series (GPT-4) は、コンピュータビジョンのための人工知能のパラダイムシフトを象徴している。
本研究は,14の医用画像データセットを対象に,Gemini,GPT-4,および4つの一般的な大規模モデルの性能評価を行った。
論文 参考訳(メタデータ) (2024-07-08T09:08:42Z) - Language Representations Can be What Recommenders Need: Findings and Potentials [57.90679739598295]
先進的なLM表現から線形にマッピングされた項目表現は、より優れたレコメンデーション性能が得られることを示す。
この結果は、先進言語表現空間と効果的な項目表現空間との同型性を示唆している。
本研究は,自然言語処理とリコメンデーションシステムコミュニティの両方に刺激を与える言語モデリングと行動モデリングの関連性を強調した。
論文 参考訳(メタデータ) (2024-07-07T17:05:24Z) - A Transformer-based representation-learning model with unified
processing of multimodal input for clinical diagnostics [63.106382317917344]
本稿では,マルチモーダル入力を統一的に処理する臨床診断支援として,トランスフォーマーを用いた表現学習モデルについて報告する。
統一モデルは, 肺疾患の同定において, 画像のみのモデル, 非統一型マルチモーダル診断モデルより優れていた。
論文 参考訳(メタデータ) (2023-06-01T16:23:47Z) - Language Models are Few-shot Learners for Prognostic Prediction [0.4254099382808599]
実際の患者の臨床データと分子プロファイルを用いた免疫療法の予後予測におけるトランスフォーマーと言語モデルの利用について検討する。
この研究は、複数のがんタイプにわたる予後予測におけるベースラインと言語モデルの有効性をベンチマークし、数発の条件下で異なる事前訓練された言語モデルの影響を調査する。
論文 参考訳(メタデータ) (2023-02-24T15:35:36Z) - Making the Most of Text Semantics to Improve Biomedical Vision--Language
Processing [17.96645738679543]
テキスト・セマンティック・モデリングは自己教師付き視覚処理におけるコントラスト学習を大幅に改善できることを示す。
テキストモデリングの改善に焦点をあてた,自己教師型共同視覚言語アプローチを提案する。
論文 参考訳(メタデータ) (2022-04-21T00:04:35Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
中国初のバイオメディカル言語理解評価ベンチマークを提示する。
名前付きエンティティ認識、情報抽出、臨床診断正規化、単文/文対分類を含む自然言語理解タスクのコレクションである。
本研究は,現在の11種類の中国モデルによる実験結果について報告し,その実験結果から,現在最先端のニューラルモデルがヒトの天井よりもはるかに悪い性能を示すことが示された。
論文 参考訳(メタデータ) (2021-06-15T12:25:30Z) - Neural Language Models with Distant Supervision to Identify Major
Depressive Disorder from Clinical Notes [2.1060613825447407]
大うつ病 (Major depressive disorder, MDD) は、世界中で深刻な医療負担を伴う精神疾患である。
近年、Bidirectional Representations for Transformers (BERT) モデルなどのニューラルネットワークモデルが進歩し、最先端のニューラルネットワークモデルが生まれた。
臨床ノートからMDD表現型を同定するために,遠隔監視パラダイムでニューラルネットワークモデルを活用することを提案する。
論文 参考訳(メタデータ) (2021-04-19T21:11:41Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
本研究は, 類似患者のサブグループを同定し, 数発の疾患のサブタイプ予測問題に焦点を当てた。
新しいモデルを開発するためにメタラーニング技術を導入し、関連する臨床課題から共通の経験や知識を抽出する。
我々の新しいモデルは、単純だが効果的なメタ学習マシンであるPrototypeal Networkと呼ばれる、慎重に設計されたメタラーナーに基づいて構築されている。
論文 参考訳(メタデータ) (2020-09-02T02:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。