A Novel Mathematical Framework for Objective Characterization of Ideas through Vector Embeddings in LLM
- URL: http://arxiv.org/abs/2409.07578v2
- Date: Mon, 7 Oct 2024 11:04:31 GMT
- Title: A Novel Mathematical Framework for Objective Characterization of Ideas through Vector Embeddings in LLM
- Authors: B. Sankar, Dibakar Sen,
- Abstract summary: This study introduces a comprehensive mathematical framework for automated analysis to objectively evaluate the plethora of ideas generated by CAI systems and/or humans.
By converting the ideas into higher dimensional vectors and quantitatively measuring the diversity between them using tools such as UMAP, DBSCAN and PCA, the proposed method provides a reliable and objective way of selecting the most promising ideas.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The demand for innovation in product design necessitates a prolific ideation phase. Conversational AI (CAI) systems that use Large Language Models (LLMs) such as GPT (Generative Pre-trained Transformer) have been shown to be fruitful in augmenting human creativity, providing numerous novel and diverse ideas. Despite the success in ideation quantity, the qualitative assessment of these ideas remains challenging and traditionally reliant on expert human evaluation. This method suffers from limitations such as human judgment errors, bias, and oversight. Addressing this gap, our study introduces a comprehensive mathematical framework for automated analysis to objectively evaluate the plethora of ideas generated by CAI systems and/or humans. This framework is particularly advantageous for novice designers who lack experience in selecting promising ideas. By converting the ideas into higher dimensional vectors and quantitatively measuring the diversity between them using tools such as UMAP, DBSCAN and PCA, the proposed method provides a reliable and objective way of selecting the most promising ideas, thereby enhancing the efficiency of the ideation phase.
Related papers
- IdeaBench: Benchmarking Large Language Models for Research Idea Generation [19.66218274796796]
Large Language Models (LLMs) have transformed how people interact with artificial intelligence (AI) systems.
We propose IdeaBench, a benchmark system that includes a comprehensive dataset and an evaluation framework.
Our dataset comprises titles and abstracts from a diverse range of influential papers, along with their referenced works.
Our evaluation framework is a two-stage process: first, using GPT-4o to rank ideas based on user-specified quality indicators such as novelty and feasibility, enabling scalable personalization.
arXiv Detail & Related papers (2024-10-31T17:04:59Z) - A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
Image restoration (IR) refers to the process of improving visual quality of images while removing degradation, such as noise, blur, weather effects, and so on.
Traditional IR methods typically target specific types of degradation, which limits their effectiveness in real-world scenarios with complex distortions.
The all-in-one image restoration (AiOIR) paradigm has emerged, offering a unified framework that adeptly addresses multiple degradation types.
arXiv Detail & Related papers (2024-10-19T11:11:09Z) - Nova: An Iterative Planning and Search Approach to Enhance Novelty and Diversity of LLM Generated Ideas [30.3756058589173]
We introduce an enhanced planning and search methodology designed to boost the creative potential of large language models (LLMs)
Our framework substantially elevates the quality of generated ideas, particularly in novelty and diversity.
Our method outperforms the current state-of-the-art, generating at least 2.5 times more top-rated ideas based on 170 seed papers in a Swiss Tournament evaluation.
arXiv Detail & Related papers (2024-10-18T08:04:36Z) - A Novel Idea Generation Tool using a Structured Conversational AI (CAI) System [0.0]
This paper presents a novel conversational AI-enabled active ideation interface as a creative idea-generation tool to assist novice designers.
It is a dynamic, interactive, and contextually responsive approach, actively involving a large language model (LLM) from the domain of natural language processing (NLP) in artificial intelligence (AI)
Integrating such AI models with ideation creates what we refer to as an Active Ideation scenario, which helps foster continuous dialogue-based interaction, context-sensitive conversation, and prolific idea generation.
arXiv Detail & Related papers (2024-09-09T16:02:27Z) - Good Idea or Not, Representation of LLM Could Tell [86.36317971482755]
We focus on idea assessment, which aims to leverage the knowledge of large language models to assess the merit of scientific ideas.
We release a benchmark dataset from nearly four thousand manuscript papers with full texts, meticulously designed to train and evaluate the performance of different approaches to this task.
Our findings suggest that the representations of large language models hold more potential in quantifying the value of ideas than their generative outputs.
arXiv Detail & Related papers (2024-09-07T02:07:22Z) - AutoTRIZ: Artificial Ideation with TRIZ and Large Language Models [2.7624021966289605]
Theory of Inventive Problem Solving is widely applied for systematic innovation.
The complexity of TRIZ resources and concepts, coupled with its reliance on users' knowledge, experience, and reasoning capabilities, limits its practicality.
This paper proposes AutoTRIZ, an artificial ideation tool that uses LLMs to automate and enhance the TRIZ methodology.
arXiv Detail & Related papers (2024-03-13T02:53:36Z) - ChatEval: Towards Better LLM-based Evaluators through Multi-Agent Debate [57.71597869337909]
We build a multi-agent referee team called ChatEval to autonomously discuss and evaluate the quality of generated responses from different models.
Our analysis shows that ChatEval transcends mere textual scoring, offering a human-mimicking evaluation process for reliable assessments.
arXiv Detail & Related papers (2023-08-14T15:13:04Z) - Diffusion-based Visual Counterfactual Explanations -- Towards Systematic
Quantitative Evaluation [64.0476282000118]
Latest methods for visual counterfactual explanations (VCE) harness the power of deep generative models to synthesize new examples of high-dimensional images of impressive quality.
It is currently difficult to compare the performance of these VCE methods as the evaluation procedures largely vary and often boil down to visual inspection of individual examples and small scale user studies.
We propose a framework for systematic, quantitative evaluation of the VCE methods and a minimal set of metrics to be used.
arXiv Detail & Related papers (2023-08-11T12:22:37Z) - Image Quality Assessment in the Modern Age [53.19271326110551]
This tutorial provides the audience with the basic theories, methodologies, and current progresses of image quality assessment (IQA)
We will first revisit several subjective quality assessment methodologies, with emphasis on how to properly select visual stimuli.
Both hand-engineered and (deep) learning-based methods will be covered.
arXiv Detail & Related papers (2021-10-19T02:38:46Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.