Supporting Online Discussions: Integrating AI Into the adhocracy+ Participation Platform To Enhance Deliberation
- URL: http://arxiv.org/abs/2409.07780v1
- Date: Thu, 12 Sep 2024 06:27:35 GMT
- Title: Supporting Online Discussions: Integrating AI Into the adhocracy+ Participation Platform To Enhance Deliberation
- Authors: Maike Behrendt, Stefan Sylvius Wagner, Stefan Harmeling,
- Abstract summary: We present an extension of adhocracy+, a large-scale open source participation platform, that provides two additional debate modules.
These modules are supported by AI to enhance the discussion quality and participant interaction.
- Score: 1.2699007098398807
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Online spaces allow people to discuss important issues and make joint decisions, regardless of their location or time zone. However, without proper support and thoughtful design, these discussions often lack structure and politeness during the exchanges of opinions. Artificial intelligence (AI) represents an opportunity to support both participants and organizers of large-scale online participation processes. In this paper, we present an extension of adhocracy+, a large-scale open source participation platform, that provides two additional debate modules that are supported by AI to enhance the discussion quality and participant interaction.
Related papers
- From Experts to the Public: Governing Multimodal Language Models in Politically Sensitive Video Analysis [48.14390493099495]
This paper examines the governance of large language models (MM-LLMs) through individual and collective deliberation.
We conducted a two-step study: first, interviews with 10 journalists established a baseline understanding of expert video interpretation; second, 114 individuals from the general public engaged in deliberation using Inclusive.AI.
arXiv Detail & Related papers (2024-09-15T03:17:38Z) - Constraining Participation: Affordances of Feedback Features in Interfaces to Large Language Models [49.74265453289855]
Large language models (LLMs) are now accessible to anyone with a computer, a web browser, and an internet connection via browser-based interfaces.
This paper examines the affordances of interactive feedback features in ChatGPT's interface, analysing how they shape user input and participation in iteration.
arXiv Detail & Related papers (2024-08-27T13:50:37Z) - From Stem to Stern: Contestability Along AI Value Chains [21.781422547251676]
This workshop will grow and consolidate a community of interdisciplinary CSCW researchers focusing on the topic of contestable AI.
As an outcome of the workshop, we will synthesize the most pressing opportunities and challenges for contestability along AI value chains in the form of a research roadmap.
Considering the length and depth of AI value chains, it will especially spur discussions around the contestability of AI systems along various sites of such chains.
arXiv Detail & Related papers (2024-08-02T06:57:52Z) - Facilitating Opinion Diversity through Hybrid NLP Approaches [0.18918331915892175]
This thesis proposal identifies the challenges involved in facilitating large-scale online discussions with Natural Language Processing (NLP)
We propose a three-layered hierarchy for representing perspectives that can be obtained by a mixture of human intelligence and large language models.
We illustrate how these representations can draw insights into the diversity of perspectives and allow us to investigate interactions in online discussions.
arXiv Detail & Related papers (2024-05-15T15:30:17Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - From Perils to Possibilities: Understanding how Human (and AI) Biases affect Online Fora [0.12564343689544843]
Review explores the dynamics of social interactions, user-generated contents, and biases within the context of social media analysis.
Three key points of view are: online debates, online support, and human-AI interactions.
arXiv Detail & Related papers (2024-03-21T11:04:41Z) - ChoiceMates: Supporting Unfamiliar Online Decision-Making with
Multi-Agent Conversational Interactions [58.71970923420007]
We present ChoiceMates, a system that enables conversations with a dynamic set of LLM-powered agents.
Agents, as opinionated personas, flexibly join the conversation, not only providing responses but also conversing among themselves to elicit each agent's preferences.
Our study (n=36) comparing ChoiceMates to conventional web search and single-agent showed that ChoiceMates was more helpful in discovering, diving deeper, and managing information compared to Web with higher confidence.
arXiv Detail & Related papers (2023-10-02T16:49:39Z) - Stakeholder Participation in AI: Beyond "Add Diverse Stakeholders and
Stir" [76.44130385507894]
This paper aims to ground what we dub a 'participatory turn' in AI design by synthesizing existing literature on participation and through empirical analysis of its current practices.
Based on our literature synthesis and empirical research, this paper presents a conceptual framework for analyzing participatory approaches to AI design.
arXiv Detail & Related papers (2021-11-01T17:57:04Z) - Inclusion, equality and bias in designing online mass deliberative
platforms [5.316553118382712]
Designers of online deliberative platforms aim to counter the degrading quality of online debates and eliminate online discrimination based on class, race or gender.
Support technologies such as machine learning and natural language processing open avenues for widening the circle of people involved in deliberation.
We review the transdisciplinary literature on the design of digital mass-deliberation platforms and examine the commonly featured design aspects.
arXiv Detail & Related papers (2021-07-27T10:13:57Z) - Towards Emotional Support Dialog Systems [61.58828606097423]
We define the Emotional Support Conversation task and propose an ESC Framework, which is grounded on the Helping Skills Theory.
We construct an Emotion Support Conversation dataset (ESConv) with rich annotation (especially support strategy) in a help-seeker and supporter mode.
We evaluate state-of-the-art dialog models with respect to the ability to provide emotional support.
arXiv Detail & Related papers (2021-06-02T13:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.