論文の概要: In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation
- arxiv url: http://arxiv.org/abs/2409.07796v2
- Date: Fri, 24 Jan 2025 05:24:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-27 14:55:24.693316
- Title: In-Situ Fine-Tuning of Wildlife Models in IoT-Enabled Camera Traps for Efficient Adaptation
- Title(参考訳): 効率的な適応のためのIoT対応カメラトラップにおける野生生物モデルのその場的微調整
- Authors: Mohammad Mehdi Rastikerdar, Jin Huang, Hui Guan, Deepak Ganesan,
- Abstract要約: リソース制約のあるIoTデバイスは、リモート環境における推論タスクのディープラーニングモデルにますます依存している。
これらのモデルは、照明、天気、季節条件の変動に遭遇するドメインシフトによって、かなりの精度低下を経験する。
このフレームワークは、監視された種の視覚的特徴よりも背景のシーンがより頻繁に変化するという重要な洞察を活用する。
- 参考スコア(独自算出の注目度): 8.882680489254923
- License:
- Abstract: Resource-constrained IoT devices increasingly rely on deep learning models for inference tasks in remote environments. However, these models experience significant accuracy drops due to domain shifts when encountering variations in lighting, weather, and seasonal conditions. While cloud-based retraining can address this issue, many IoT deployments operate with limited connectivity and energy constraints, making traditional fine-tuning approaches impractical. We explore this challenge through the lens of wildlife ecology, where camera traps must maintain accurate species classification across changing seasons, weather, and habitats without reliable connectivity. We introduce WildFit, an autonomous in-situ adaptation framework that leverages the key insight that background scenes change more frequently than the visual characteristics of monitored species. WildFit combines background-aware synthesis to generate training samples on-device with drift-aware fine-tuning that triggers model updates only when necessary to conserve resources. Through extensive evaluation on multiple camera trap deployments, we demonstrate that WildFit significantly improves accuracy while greatly reducing adaptation overhead compared to traditional approaches.
- Abstract(参考訳): リソース制約のあるIoTデバイスは、リモート環境における推論タスクのディープラーニングモデルにますます依存している。
しかし、これらのモデルでは、照明、天気、季節条件の変化に遭遇するドメインシフトによって、かなりの精度低下を経験する。
クラウドベースのリトレーニングはこの問題に対処できるが、多くのIoTデプロイメントでは、接続性やエネルギー制限が制限されているため、従来の微調整アプローチは現実的ではない。
この課題を野生生物生態学のレンズを通して探求し、カメラトラップは、信頼できる接続性のない季節、天候、生息地を横断する正確な種分類を維持する必要がある。
このフレームワークは、監視された種の視覚的特徴よりも背景のシーンがより頻繁に変化するという重要な洞察を活用する。
WildFitは、バックグラウンド認識合成とデバイス上のトレーニングサンプルの生成を組み合わせることで、リソースの保存に必要な場合にのみモデル更新をトリガーするドリフト対応の微調整を行う。
複数のカメラトラップ配置の広範囲な評価を通じて、WildFitは従来のアプローチに比べて適応オーバーヘッドを大幅に低減し、精度を大幅に向上することを示した。
関連論文リスト
- Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
本稿では,顔偽造検出に汎用的かつパラメータ効率の高い手法を提案する。
フォージェリー・ソース・ドメインの多様性を増大させるフォージェリー・ミックス・フォーミュレーションを設計する。
設計したモデルは、トレーニング可能なパラメータを著しく減らし、最先端の一般化性を実現する。
論文 参考訳(メタデータ) (2024-08-23T01:53:36Z) - LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - Enhanced Droplet Analysis Using Generative Adversarial Networks [0.0]
この研究は、DropletGANという画像生成装置を開発し、ドロップレットの画像を生成する。
また、合成データセットを用いた光液滴検出器の開発にも用いられている。
我々の知る限りでは、この研究は初めて、液滴の検出を増強するための生成モデルを用いたものである。
論文 参考訳(メタデータ) (2024-02-24T21:20:53Z) - Dynamic Test-Time Augmentation via Differentiable Functions [3.686808512438363]
DynTTAは、認識モデルを再訓練することなく、認識に優しい画像を生成する画像強調手法である。
DynTTAは、微分可能なデータ拡張技術に基づいて、多くの画像からブレンド画像を生成し、分布シフト時の認識精度を向上させる。
論文 参考訳(メタデータ) (2022-12-09T06:06:47Z) - Zoo-Tuning: Adaptive Transfer from a Zoo of Models [82.9120546160422]
Zoo-Tuningは、事前訓練されたモデルのパラメータをターゲットタスクに適応的に転送することを学ぶ。
我々は、強化学習、画像分類、顔のランドマーク検出など、様々なタスクに対するアプローチを評価した。
論文 参考訳(メタデータ) (2021-06-29T14:09:45Z) - Transformer-Based Source-Free Domain Adaptation [134.67078085569017]
本研究では,ソースフリードメイン適応(SFDA)の課題について検討する。
我々は、FDAの一般化モデルを学ぶためのTransformer(TransDA)という、汎用的で効果的なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-05-28T23:06:26Z) - A first step towards automated species recognition from camera trap
images of mammals using AI in a European temperate forest [0.0]
本稿では,ポーランド bialowieza forest (bf) における哺乳類のカメラトラップ画像の自動ラベリングのためのyolov5アーキテクチャの実装について述べる。
カメラトラップデータは、大規模な野生動物の監視プロジェクトを管理するためのオープンソースアプリケーションであるTRAPPERソフトウェアを使用して整理および調和されました。
提案する画像認識パイプラインは, bfにおける中型・大型哺乳類12種の同定において, 85%f1-scoreの平均精度を達成した。
論文 参考訳(メタデータ) (2021-03-19T22:48:03Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z) - Automatic Detection and Recognition of Individuals in Patterned Species [4.163860911052052]
我々は,異なるパターンの個体の自動検出と認識のための枠組みを開発する。
我々は最近提案したFaster-RCNNオブジェクト検出フレームワークを用いて画像中の動物を効率的に検出する。
我々は,シマウマおよびジャガー画像の認識システムを評価し,他のパターンの種への一般化を示す。
論文 参考訳(メタデータ) (2020-05-06T15:29:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。