Towards Timetronics with Photonic Systems
- URL: http://arxiv.org/abs/2409.07885v1
- Date: Thu, 12 Sep 2024 09:44:16 GMT
- Title: Towards Timetronics with Photonic Systems
- Authors: Ali Emami Kopaei, Karthik Subramaniam Eswaran, Arkadiusz Kosior, Daniel Hodgson, Andrey Matsko, Hossein Taheri, Almut Beige, Krzysztof Sacha,
- Abstract summary: We introduce a versatile averaged-permittivity approach which empowers emulating various condensed matter phases in the time dimension in a traveling wave resonator.
The required frequency and depth of the modulation are experimentally achievable, opening a pathway for research into the practical realisation of crystalline structures in time utilising microwave and optical systems.
- Score: 3.9750281362522237
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Periodic driving of systems of particles can create crystalline structures in time. Such systems can be used to study solid-state physics phenomena in the time domain. In addition, it is possible to engineer the wave-number band structure of optical systems and to realize photonic time crystals by periodic temporal modulation of the material properties of the electromagnetic wave propagation medium. We introduce here a versatile averaged-permittivity approach which empowers emulating various condensed matter phases in the time dimension in a traveling wave resonator. This is achieved by utilizing temporal modulation of permittivity within a small segment of the resonator and the spatial shape of the segment. The required frequency and depth of the modulation are experimentally achievable, opening a pathway for research into the practical realisation of crystalline structures in time utilising microwave and optical systems.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Photon Squeezing in Photonic Time Crystals [0.0]
Time-varying media offer a platform to realize novel and exotic wave effects.
We focus on the quantum electrodynamical properties of time-varying media, in particular vacuum amplification and squeezing.
arXiv Detail & Related papers (2024-05-08T13:28:01Z) - Measuring the magnon-photon coupling in shaped ferromagnets: tuning of
the resonance frequency [50.591267188664666]
cavity photons and ferromagnetic spins excitations can exchange information coherently in hybrid architectures.
Speed enhancement is usually achieved by optimizing the geometry of the electromagnetic cavity.
We show that the geometry of the ferromagnet plays also an important role, by setting the fundamental frequency of the magnonic resonator.
arXiv Detail & Related papers (2022-07-08T11:28:31Z) - Optical computing of quantum revivals [0.0]
We show how to structure light into distributions presenting collapse and revival structures in its wavefront.
The resulting interference may present quasiperiodic structures of diffraction peaks on a number of distance scales.
arXiv Detail & Related papers (2022-04-02T18:00:18Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Slowing down light in a qubit metamaterial [98.00295925462214]
superconducting circuits in the microwave domain still lack such devices.
We demonstrate slowing down electromagnetic waves in a superconducting metamaterial composed of eight qubits coupled to a common waveguide.
Our findings demonstrate high flexibility of superconducting circuits to realize custom band structures.
arXiv Detail & Related papers (2022-02-14T20:55:10Z) - Controlled preparation of phases in two-dimensional time crystals [0.0]
Time crystals constitute periodically driven interacting many-body systems that spontaneously break time translation symmetry.
We identify the different phases that characterize the two-dimensional time crystal.
These different phases can be mapped to the many-body states existing on a two-dimensional Hubbard lattice model.
arXiv Detail & Related papers (2021-07-29T06:42:59Z) - Shaping Dynamical Casimir Photons [0.0]
Space-time quantum metasurfaces have been proposed as a platform to realize this physics via modulation of their optical properties.
We develop a microscopic theory that applies both to moving mirrors with surface profile and atomic array meta-mirrors with perturbed lattice configuration.
The proposed space-time dynamical Casimir effect can be interpreted as an induced dynamical asymmetry in the quantum vacuum.
arXiv Detail & Related papers (2021-05-10T17:00:59Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Multidimensional synthetic chiral-tube lattices via nonlinear frequency
conversion [57.860179997051915]
We propose and experimentally realize all-optical synthetic dimensions involving specially tailored simultaneous short- and long-range interactions.
We implement a synthetic gauge field with nonzero magnetic flux and observe the associated multidimensional dynamics of frequency combs.
arXiv Detail & Related papers (2020-02-20T07:08:35Z) - Optical imprinting of superlattices in two-dimensional materials [0.0]
We use an optical method of shining circularly polarized and periodic laser fields to imprint structures in two-dimensional electronic systems.
By changing the configuration of the optical field, we synthesize various lattice structures with different spatial symmetry, periodicity, and strength.
arXiv Detail & Related papers (2019-12-30T19:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.