Superior decoy state and purification quantum key distribution protocols for realistic quantum-dot based single photon sources
- URL: http://arxiv.org/abs/2409.07939v1
- Date: Thu, 12 Sep 2024 11:07:50 GMT
- Title: Superior decoy state and purification quantum key distribution protocols for realistic quantum-dot based single photon sources
- Authors: Yoad Ordan, Yuval Bloom, Tamar Levin, Kfir Sulimany, Jennifer A. Hollingsworth, Ronen Rapaport,
- Abstract summary: We experimentally emulate two simple-to-implement protocols that allow practical, far from ideal sub-Poissonian photon sources to outperform state-of-the-art WCS.
By engineering the photon statistics of a quantum dot's biexciton-exciton cascade, we show that either a truncated decoy state protocol or a heralded purification protocol can be employed.
- Score: 0.35342120781147623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The original proposal of quantum key distribution (QKD) was based on ideal single photon sources, which 40 years later, are still challenging to develop. Therefore, the development of decoy state protocols using weak coherent states (WCS) from lasers, set the frontier in terms of secure key rates. Here, we propose and experimentally emulate two simple-to-implement protocols that allow practical, far from ideal sub-Poissonian photon sources to outperform state-of-the-art WCS. By engineering the photon statistics of a quantum dot's biexciton-exciton cascade, we show that either a truncated decoy state protocol or a heralded purification protocol can be employed to achieve a significantly increased performance in terms of the maximal allowed channel loss for secure key creation, which can exceed that of WCS by more than 3dB. We then show that our recently demonstrated room temperature single photon sources, based on giant colloidal quantum dots coupled to nano-antennas, are already well within the optimal performance range. These protocols can be utilized efficiently on a host of various sub-Poissonian quantum emitters having controllable photon statistics, offering a practical approach to QKD without the hindering requirements on the single photon purity of the photon source.
Related papers
- Secure quantum imaging with decoy state heralded single photons [0.0]
We study quantum secured imaging with the decoy state heralded single photon source (HSPS)
The HSPSs superior performance in low photon number regimes makes it an ideal candidate for integrating quantum key distribution protocols.
arXiv Detail & Related papers (2024-02-18T18:43:05Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - QUICK$^3$ -- Design of a satellite-based quantum light source for
quantum communication and extended physical theory tests in space [73.86330563258117]
Single photon source can enhance secure data rates in satellite-based quantum key distribution scenarios.
payload is being integrated into a 3U CubeSat and scheduled for launch in 2024 into low Earth orbit.
arXiv Detail & Related papers (2023-01-26T15:34:11Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Enhancing secure key rates of satellite QKD using a quantum dot
single-photon source [0.5420492913071214]
Global quantum secure communication can be achieved using quantum key distribution (QKD) with orbiting satellites.
Existing techniques use attenuated lasers as weak coherent pulse (WCP) sources, with so-called decoy-state protocols, to generate the required single-photon-level pulses.
We improve on this limitation by using true single-photon pulses generated from a semiconductor quantum dot (QD) embedded in a nanowire.
arXiv Detail & Related papers (2020-09-24T16:55:16Z) - Effect of source statistics on utilizing photon entanglement in quantum
key distribution [0.0]
We show that secure key rate of down-converted photon pairs is limited to 0.029 bits per detection window due to intrinsic multiphoton contributions.
We find a bound for secure key rate extracted from SPDC sources and make a comparison with perfectly single-pair quantum states.
arXiv Detail & Related papers (2020-08-17T17:47:54Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z) - Quantum key distribution with any two independent and identically
distributed states [0.0]
We provide a security proof of a QKD protocol where the usage of any light source is allowed as long as it emits two independent and identically distributed (i.i.d.) states.
It is remarkable that as long as the light source emits two i.i.d. states, even if we have no prior knowledge of the light source, we can securely employ it in the QKD protocol.
arXiv Detail & Related papers (2020-05-14T11:43:29Z) - Experimental study of continuous variable quantum key distribution [0.22099217573031674]
main technological factors limiting the communication rates of quantum cryptography systems by single photon are mainly related to the choice of the encoding method.
We propose a new reconciliation method based on Turbo codes.
Our method leads to a significant improvement of the protocol security and a large decrease of the QBER.
arXiv Detail & Related papers (2020-02-16T21:50:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.