Effect of source statistics on utilizing photon entanglement in quantum
key distribution
- URL: http://arxiv.org/abs/2008.07501v2
- Date: Mon, 26 Apr 2021 17:48:04 GMT
- Title: Effect of source statistics on utilizing photon entanglement in quantum
key distribution
- Authors: Radim Ho\v{s}\'ak, Ivo Straka, Ana Predojevi\'c, Radim Filip, Miroslav
Je\v{z}ek
- Abstract summary: We show that secure key rate of down-converted photon pairs is limited to 0.029 bits per detection window due to intrinsic multiphoton contributions.
We find a bound for secure key rate extracted from SPDC sources and make a comparison with perfectly single-pair quantum states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A workflow for evaluation of entanglement source quality is proposed. Based
on quantum state density matrices obtained from theoretical models and
experimental data, we make an estimate of a potential performance of a quantum
entanglement source in quantum key distribution protocols. This workflow is
showcased for continuously pumped spontaneous parametric down-conversion (SPDC)
source, where it highlights the trade-off between entangled pair generation
rate and entanglement quality caused by multiphoton nature of the generated
quantum states. We employ this characterization technique to show that secure
key rate of down-converted photon pairs is limited to 0.029 bits per detection
window due to intrinsic multiphoton contributions. We also report that there
exists one optimum gain for continuous-wave down-conversion sources. We find a
bound for secure key rate extracted from SPDC sources and make a comparison
with perfectly single-pair quantum states, such as those produced by quantum
dots.
Related papers
- Superior decoy state and purification quantum key distribution protocols for realistic quantum-dot based single photon sources [0.35342120781147623]
We experimentally emulate two simple-to-implement protocols that allow practical, far from ideal sub-Poissonian photon sources to outperform state-of-the-art WCS.
By engineering the photon statistics of a quantum dot's biexciton-exciton cascade, we show that either a truncated decoy state protocol or a heralded purification protocol can be employed.
arXiv Detail & Related papers (2024-09-12T11:07:50Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Enhancing quantum cryptography with quantum dot single-photon sources [0.0]
Quantum dot-based single-photon sources are remarkable candidates.
We show that these sources provide additional security benefits, thanks to the tunability of coherence in the emitted photon-number states.
We identify the optimal optical pumping scheme for the main quantum-cryptographic primitives.
arXiv Detail & Related papers (2022-04-25T15:46:12Z) - Atomically-thin Single-photon Sources for Quantum Communication [0.28348950186890465]
Confined excitons in monolayers of transition metal dichalcogenides (TMDCs) constitute an emerging type of emitter for quantum light generation.
We pioneer the practical suitability of TMDC devices in quantum communication.
Our work opens the route towards wider applications of quantum information technologies using TMDC single-photon sources.
arXiv Detail & Related papers (2022-04-13T14:40:43Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Statistical limits for quantum networks with semiconductor entangled
photon sources [1.44854099261305]
We explore the statistical limits for entanglement swapping with sources of polarization-entangled photons from the commonly used biexciton-exciton cascade.
We stress the necessity of tuning the exciton fine structure, and explain why the often observed time evolution of photonic entanglement in quantum dots is not applicable for large quantum networks.
arXiv Detail & Related papers (2021-09-14T14:57:50Z) - Entangled Photon-Pair Sources based on three-wave mixing in bulk
crystals [61.84816391246232]
Entangled photon-pairs are a critical resource in quantum communication protocols ranging from quantum key distribution to teleportation.
The increased prominence of quantum networks has led to growing interest in deployable high performance entangled photon-pair sources.
This manuscript provides a review of the state-of-the-art for bulk-optics-based SPDC sources with continuous wave pump.
arXiv Detail & Related papers (2020-07-30T10:35:06Z) - Near-ideal spontaneous photon sources in silicon quantum photonics [55.41644538483948]
Integrated photonics is a robust platform for quantum information processing.
Sources of single photons that are highly indistinguishable and pure, that are either near-deterministic or heralded with high efficiency, have been elusive.
Here, we demonstrate on-chip photon sources that simultaneously meet each of these requirements.
arXiv Detail & Related papers (2020-05-19T16:46:44Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.