Taylor-Sensus Network: Embracing Noise to Enlighten Uncertainty for Scientific Data
- URL: http://arxiv.org/abs/2409.07942v1
- Date: Thu, 12 Sep 2024 11:10:27 GMT
- Title: Taylor-Sensus Network: Embracing Noise to Enlighten Uncertainty for Scientific Data
- Authors: Guangxuan Song, Dongmei Fu, Zhongwei Qiu, Jintao Meng, Dawei Zhang,
- Abstract summary: Uncertainty estimation is crucial in scientific data for machine learning.
We propose the Taylor-Sensus Network (TSNet) to model complex, heteroscedastic noise.
TSNet demonstrates superior performance over mainstream and state-of-the-art methods in experiments.
- Score: 9.644709229719725
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty estimation is crucial in scientific data for machine learning. Current uncertainty estimation methods mainly focus on the model's inherent uncertainty, while neglecting the explicit modeling of noise in the data. Furthermore, noise estimation methods typically rely on temporal or spatial dependencies, which can pose a significant challenge in structured scientific data where such dependencies among samples are often absent. To address these challenges in scientific research, we propose the Taylor-Sensus Network (TSNet). TSNet innovatively uses a Taylor series expansion to model complex, heteroscedastic noise and proposes a deep Taylor block for aware noise distribution. TSNet includes a noise-aware contrastive learning module and a data density perception module for aleatoric and epistemic uncertainty. Additionally, an uncertainty combination operator is used to integrate these uncertainties, and the network is trained using a novel heteroscedastic mean square error loss. TSNet demonstrates superior performance over mainstream and state-of-the-art methods in experiments, highlighting its potential in scientific research and noise resistance. It will be open-source to facilitate the community of "AI for Science".
Related papers
- Learning with Noisy Foundation Models [95.50968225050012]
This paper is the first work to comprehensively understand and analyze the nature of noise in pre-training datasets.
We propose a tuning method (NMTune) to affine the feature space to mitigate the malignant effect of noise and improve generalization.
arXiv Detail & Related papers (2024-03-11T16:22:41Z) - TNANet: A Temporal-Noise-Aware Neural Network for Suicidal Ideation
Prediction with Noisy Physiological Data [21.1401772311666]
We introduce a novel neural network model for analyzing noisy physiological time-series data, named TNANet.
Our TNANet achieves the prediction accuracy of 63.33% in a binary classification task, outperforming state-of-the-art models.
arXiv Detail & Related papers (2024-01-23T13:11:05Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
We propose a new estimation method by actively de-noising the observed data.
By conducting a broad range of experiments, we demonstrate that our proposed approach provides a much closer approximation to the actual data uncertainty than the standard method.
arXiv Detail & Related papers (2023-12-16T14:59:11Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising
Diffusion Models [53.67562579184457]
This paper focuses on probabilistic STG forecasting, which is challenging due to the difficulty in modeling uncertainties and complex dependencies.
We present the first attempt to generalize the popular denoising diffusion models to STGs, leading to a novel non-autoregressive framework called DiffSTG.
Our approach combines the intrinsic-temporal learning capabilities STNNs with the uncertainty measurements of diffusion models.
arXiv Detail & Related papers (2023-01-31T13:42:36Z) - Operator inference with roll outs for learning reduced models from
scarce and low-quality data [0.0]
We propose to combine data-driven modeling via operator inference with the dynamic training via roll outs of neural ordinary differential equations.
We show that operator inference with roll outs provides predictive models from training trajectories even if data are sampled sparsely in time and polluted with noise of up to 10%.
arXiv Detail & Related papers (2022-12-02T19:41:31Z) - Deep Active Learning with Noise Stability [24.54974925491753]
Uncertainty estimation for unlabeled data is crucial to active learning.
We propose a novel algorithm that leverages noise stability to estimate data uncertainty.
Our method is generally applicable in various tasks, including computer vision, natural language processing, and structural data analysis.
arXiv Detail & Related papers (2022-05-26T13:21:01Z) - The Optimal Noise in Noise-Contrastive Learning Is Not What You Think [80.07065346699005]
We show that deviating from this assumption can actually lead to better statistical estimators.
In particular, the optimal noise distribution is different from the data's and even from a different family.
arXiv Detail & Related papers (2022-03-02T13:59:20Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Robust Learning of Recurrent Neural Networks in Presence of Exogenous
Noise [22.690064709532873]
We propose a tractable robustness analysis for RNN models subject to input noise.
The robustness measure can be estimated efficiently using linearization techniques.
Our proposed methodology significantly improves robustness of recurrent neural networks.
arXiv Detail & Related papers (2021-05-03T16:45:05Z) - Deep Learning based Uncertainty Decomposition for Real-time Control [9.067368638784355]
We propose a novel method for detecting the absence of training data using deep learning.
We show its advantages over existing approaches on synthetic and real-world datasets.
We further demonstrate the practicality of this uncertainty estimate in deploying online data-efficient control on a simulated quadcopter.
arXiv Detail & Related papers (2020-10-06T10:46:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.