Collaborative Automatic Modulation Classification via Deep Edge Inference for Hierarchical Cognitive Radio Networks
- URL: http://arxiv.org/abs/2409.07946v2
- Date: Sat, 14 Sep 2024 15:49:09 GMT
- Title: Collaborative Automatic Modulation Classification via Deep Edge Inference for Hierarchical Cognitive Radio Networks
- Authors: Chaowei He, Peihao Dong, Fuhui Zhou, Qihui Wu,
- Abstract summary: In hierarchical cognitive radio networks, edge or cloud servers utilize the data collected by edge devices for modulation classification.
In this article, an edge learning (EL) based framework jointly mobilizing the edge device and the edge server for intelligent co-inference is proposed.
- Score: 19.303303020775555
- License:
- Abstract: In hierarchical cognitive radio networks, edge or cloud servers utilize the data collected by edge devices for modulation classification, which, however, is faced with problems of the transmission overhead, data privacy, and computation load. In this article, an edge learning (EL) based framework jointly mobilizing the edge device and the edge server for intelligent co-inference is proposed to realize the collaborative automatic modulation classification (C-AMC) between them. A spectrum semantic compression neural network (SSCNet) with the lightweight structure is designed for the edge device to compress the collected raw data into a compact semantic message that is then sent to the edge server via the wireless channel. On the edge server side, a modulation classification neural network (MCNet) combining bidirectional long short-term memory (Bi-LSTM) and multi-head attention layers is elaborated to determine the modulation type from the noisy semantic message. By leveraging the computation resources of both the edge device and the edge server, high transmission overhead and risks of data privacy leakage are avoided. The simulation results verify the effectiveness of the proposed C-AMC framework, significantly reducing the model size and computational complexity.
Related papers
- Decentralised Resource Sharing in TinyML: Wireless Bilayer Gossip Parallel SGD for Collaborative Learning [2.6913398550088483]
This paper proposes a novel framework, bilayer Gossip Decentralised Parallel Descent (GDD)
GDD addresses intermittent connectivity, limited communication range, and dynamic network topologies.
We evaluate the framework's performance against the Centralised Federated Learning (CFL) baseline.
arXiv Detail & Related papers (2025-01-08T20:14:07Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
This paper studies the computational offloading of CNN inference in device-edge co-inference systems.
We propose a novel autoencoder-based CNN architecture (AECNN) for effective feature extraction at end-device.
Experiments show that AECNN can compress the intermediate data by more than 256x with only about 4% accuracy loss.
arXiv Detail & Related papers (2022-11-24T18:10:01Z) - Task-Oriented Over-the-Air Computation for Multi-Device Edge AI [57.50247872182593]
6G networks for supporting edge AI features task-oriented techniques that focus on effective and efficient execution of AI task.
Task-oriented over-the-air computation (AirComp) scheme is proposed in this paper for multi-device split-inference system.
arXiv Detail & Related papers (2022-11-02T16:35:14Z) - Task-Oriented Sensing, Computation, and Communication Integration for
Multi-Device Edge AI [108.08079323459822]
This paper studies a new multi-intelligent edge artificial-latency (AI) system, which jointly exploits the AI model split inference and integrated sensing and communication (ISAC)
We measure the inference accuracy by adopting an approximate but tractable metric, namely discriminant gain.
arXiv Detail & Related papers (2022-07-03T06:57:07Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
arXiv Detail & Related papers (2022-01-09T09:31:50Z) - Communication-Computation Efficient Device-Edge Co-Inference via AutoML [4.06604174802643]
Device-edge co-inference partitions a deep neural network between a resource-constrained mobile device and an edge server.
On-device model sparsity level and intermediate feature compression ratio have direct impacts on workload and communication overhead.
We propose a novel automated machine learning (AutoML) framework based on deep reinforcement learning (DRL)
arXiv Detail & Related papers (2021-08-30T06:36:30Z) - Neural Compression and Filtering for Edge-assisted Real-time Object
Detection in Challenged Networks [8.291242737118482]
We focus on edge computing supporting remote object detection by means of Deep Neural Networks (DNNs)
We develop a framework to reduce the amount of data transmitted over the wireless link.
The proposed technique represents an effective intermediate option between local and edge computing in a parameter region.
arXiv Detail & Related papers (2020-07-31T03:11:46Z) - A Compressive Sensing Approach for Federated Learning over Massive MIMO
Communication Systems [82.2513703281725]
Federated learning is a privacy-preserving approach to train a global model at a central server by collaborating with wireless devices.
We present a compressive sensing approach for federated learning over massive multiple-input multiple-output communication systems.
arXiv Detail & Related papers (2020-03-18T05:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.