論文の概要: Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
- arxiv url: http://arxiv.org/abs/2409.07989v1
- Date: Thu, 12 Sep 2024 12:34:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 16:39:03.530704
- Title: Enhancing Few-Shot Image Classification through Learnable Multi-Scale Embedding and Attention Mechanisms
- Title(参考訳): 学習可能なマルチスケール埋め込みと注意機構によるFew-Shot画像分類の強化
- Authors: Fatemeh Askari, Amirreza Fateh, Mohammad Reza Mohammadi,
- Abstract要約: 少数の分類の文脈において、ゴールは、限られた数のサンプルを使用して分類器を訓練することである。
伝統的なメートル法は、この目的を達成するための一定の限界を示す。
提案手法では,サンプルを異なる特徴空間にマッピングするマルチ出力埋め込みネットワークを利用する。
- 参考スコア(独自算出の注目度): 1.1557852082644071
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the context of few-shot classification, the goal is to train a classifier using a limited number of samples while maintaining satisfactory performance. However, traditional metric-based methods exhibit certain limitations in achieving this objective. These methods typically rely on a single distance value between the query feature and support feature, thereby overlooking the contribution of shallow features. To overcome this challenge, we propose a novel approach in this paper. Our approach involves utilizing multi-output embedding network that maps samples into distinct feature spaces. The proposed method extract feature vectors at different stages, enabling the model to capture both global and abstract features. By utilizing these diverse feature spaces, our model enhances its performance. Moreover, employing a self-attention mechanism improves the refinement of features at each stage, leading to even more robust representations and improved overall performance. Furthermore, assigning learnable weights to each stage significantly improved performance and results. We conducted comprehensive evaluations on the MiniImageNet and FC100 datasets, specifically in the 5-way 1-shot and 5-way 5-shot scenarios. Additionally, we performed a cross-domain task from MiniImageNet to the CUB dataset, achieving high accuracy in the testing domain. These evaluations demonstrate the efficacy of our proposed method in comparison to state-of-the-art approaches. https://github.com/FatemehAskari/MSENet
- Abstract(参考訳): 少数の分類の文脈において、目標は、満足な性能を維持しながら、限られた数のサンプルを使用して分類器を訓練することである。
しかし、伝統的な計量に基づく手法は、この目的を達成するための一定の限界を示す。
これらのメソッドは通常、クエリ機能とサポート機能の間の単一の距離値に依存するため、浅い機能の貢献を見落としている。
この課題を克服するために,本稿では,新しいアプローチを提案する。
提案手法では,サンプルを異なる特徴空間にマッピングするマルチ出力埋め込みネットワークを利用する。
提案手法は,異なる段階で特徴ベクトルを抽出し,大域的特徴と抽象的特徴の両方を抽出する。
これらの多様な特徴空間を利用することで、我々のモデルは性能を向上させる。
さらに、自己注意機構を利用することで、各ステージにおける機能の洗練が向上し、さらに堅牢な表現が可能になり、全体的なパフォーマンスが向上する。
さらに、各ステージに学習可能な重量を割り当てることで、性能と結果が大幅に向上した。
我々は,MiniImageNetとFC100データセットの総合評価を行い,特に5-way 1-shotと5-way 5-shotのシナリオについて検討した。
さらに、MiniImageNetからCUBデータセットへのクロスドメインタスクを実行し、テスト領域で高い精度を実現した。
これらの評価は,提案手法が最先端手法と比較して有効であることを示す。
https://github.com/FatemehAskari/MSENet
関連論文リスト
- Sample Less, Learn More: Efficient Action Recognition via Frame Feature
Restoration [59.6021678234829]
本稿では,2つのスパースサンプリングおよび隣接するビデオフレームの中間特徴を復元する新しい手法を提案する。
提案手法の統合により, 一般的な3つのベースラインの効率は50%以上向上し, 認識精度は0.5%低下した。
論文 参考訳(メタデータ) (2023-07-27T13:52:42Z) - CAD: Co-Adapting Discriminative Features for Improved Few-Shot
Classification [11.894289991529496]
少数のラベル付きサンプルを与えられた未確認のクラスに適応できるモデルを学ぶことを目的としている。
最近のアプローチでは、特徴抽出器を事前訓練し、その後、エピソードなメタラーニングのための微調整を行う。
本研究は, 複数ショットの分類において, 横断的および再重み付き識別機能を実現するための戦略を提案する。
論文 参考訳(メタデータ) (2022-03-25T06:14:51Z) - Beyond Simple Meta-Learning: Multi-Purpose Models for Multi-Domain,
Active and Continual Few-Shot Learning [41.07029317930986]
低ラベル方式で動作するモデルの分散感応クラスを提案する。
最初の手法であるSimple CNAPSは階層的に正規化されたマハラノビス距離に基づく分類器を用いる。
我々はさらに、このアプローチをトランスダクティブ学習環境に拡張し、トランスダクティブCNAPSを提案する。
論文 参考訳(メタデータ) (2022-01-13T18:59:02Z) - SCNet: Enhancing Few-Shot Semantic Segmentation by Self-Contrastive
Background Prototypes [56.387647750094466]
Few-shot セマンティックセマンティックセマンティクスは,クエリイメージ内の新規クラスオブジェクトを,アノテーション付きの例で分割することを目的としている。
先進的なソリューションのほとんどは、各ピクセルを学習した前景のプロトタイプに合わせることでセグメンテーションを行うメトリクス学習フレームワークを利用している。
このフレームワークは、前景プロトタイプのみとのサンプルペアの不完全な構築のために偏った分類に苦しんでいます。
論文 参考訳(メタデータ) (2021-04-19T11:21:47Z) - Distribution Alignment: A Unified Framework for Long-tail Visual
Recognition [52.36728157779307]
長尾視覚認識のための分散アライメント戦略を提案する。
次に,二段階学習における一般化された再重み付け法を導入して,事前のクラスバランスをとる。
提案手法は, 4つの認識タスクすべてにおいて, 単純で統一されたフレームワークを用いて最先端の結果を得る。
論文 参考訳(メタデータ) (2021-03-30T14:09:53Z) - Multi-scale Interactive Network for Salient Object Detection [91.43066633305662]
本稿では,隣接レベルからの機能を統合するためのアグリゲート・インタラクション・モジュールを提案する。
より効率的なマルチスケール機能を得るために、各デコーダユニットに自己相互作用モジュールを埋め込む。
5つのベンチマークデータセットによる実験結果から,提案手法は後処理を一切行わず,23の最先端手法に対して良好に動作することが示された。
論文 参考訳(メタデータ) (2020-07-17T15:41:37Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
画像中のオブジェクトに逐次出席するクラスアテンション機構を導入し,それらの特徴を抽出する。
提案手法は点レベルのアノテーションに基づいて訓練され,モデルのクラス依存的・クラス依存的側面を乱す新しい損失関数を用いる。
本稿では,FSODやMS COCOなど,さまざまなオブジェクトカウント/検出データセットについて報告する。
論文 参考訳(メタデータ) (2020-07-03T18:23:39Z) - One-Shot Object Detection without Fine-Tuning [62.39210447209698]
本稿では,第1ステージのMatching-FCOSネットワークと第2ステージのStructure-Aware Relation Moduleからなる2段階モデルを提案する。
また,検出性能を効果的に向上する新たなトレーニング戦略を提案する。
提案手法は,複数のデータセット上で一貫した最先端のワンショット性能を上回る。
論文 参考訳(メタデータ) (2020-05-08T01:59:23Z) - SimPropNet: Improved Similarity Propagation for Few-shot Image
Segmentation [14.419517737536706]
最近のディープニューラルネットワークに基づくFSS法は,サポート画像の前景特徴とクエリ画像特徴との高次元的特徴類似性を生かしている。
我々は,サポート機能とクエリ機能との共有を強制するために,サポートとクエリマスクを共同で予測することを提案する。
提案手法は,PASCAL-5iデータセット上での1ショットと5ショットのセグメンテーションに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2020-04-30T17:56:48Z) - Objectness-Aware Few-Shot Semantic Segmentation [31.13009111054977]
モデル全体のキャパシティを向上し、パフォーマンスを向上させる方法を示す。
我々は、クラス非依存であり、過度に適合しがちな客観性を導入する。
注釈のないカテゴリの例が1つだけあると、実験により、mIoUに関して、我々の手法が最先端の手法より優れていることが示されている。
論文 参考訳(メタデータ) (2020-04-06T19:12:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。