Demonstration of Scully-Drühl-type quantum erasers on quantum computers
- URL: http://arxiv.org/abs/2409.08053v2
- Date: Mon, 23 Sep 2024 13:04:46 GMT
- Title: Demonstration of Scully-Drühl-type quantum erasers on quantum computers
- Authors: Bo-Hung Chen, Dah-Wei Chiou, Hsiu-Chuan Hsu,
- Abstract summary: We present a novel quantum circuit that genuinely implements the Scully-Dr"uhl-type delayed-choice quantum eraser.
Experiments conducted on IBM Quantum and IonQ processors demonstrate that the recovery of interference patterns, to varying degrees, aligns closely with theoretical predictions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel quantum circuit that genuinely implements the Scully-Dr\"uhl-type delayed-choice quantum eraser, where the two recorders of the which-way information directly interact with the signal qubit and remain spatially separated. Experiments conducted on IBM Quantum and IonQ processors demonstrate that the recovery of interference patterns, to varying degrees, aligns closely with theoretical predictions, despite the presence of systematic errors. This quantum circuit-based approach, more manageable and versatile than traditional optical experiments, facilitates arbitrary adjustment of the erasure and enables a true random choice in a genuine delayed-choice manner. On the IBM Quantum platform, delay gates can be employed to further defer the random choice, thereby amplifying the retrocausal effect. Since gate operations are executed sequentially in time, the system does not have any involvement of random choice until after the signal qubit has been measured, therefore eliminating any potential philosophical loopholes regarding retrocausality that might exist in other experimental setups. Remarkably, quantum erasure is achieved with delay times up to $\sim1\,\mu\text{s}$ without noticeable decoherence, a feat challenging to replicate in optical setups.
Related papers
- Ancillary entangling Floquet kicks for accelerating quantum algorithms [0.21990652930491855]
We accelerate quantum simulation using digital multi-qubit gates that entangle primary system qubits with the ancillary qubits.
For simple but nontrivial short-ranged, infinite long-ranged transverse-field Ising models, and the hydrogen molecule model after qubit encoding, we show improvement in the time to solution by one hundred percent.
arXiv Detail & Related papers (2024-08-23T19:40:24Z) - Hysteresis and Self-Oscillations in an Artificial Memristive Quantum Neuron [79.16635054977068]
We study an artificial neuron circuit containing a quantum memristor in the presence of relaxation and dephasing.
We demonstrate that this physical principle enables hysteretic behavior of the current-voltage characteristics of the quantum device.
arXiv Detail & Related papers (2024-05-01T16:47:23Z) - Universal quantum operations and ancilla-based readout for tweezer clocks [3.2810235099960297]
We show universal quantum operations and ancilla-based readout for ultranarrow optical transitions of neutral atoms.
Our work lays the foundation for hybrid processor-clock devices with neutral atoms and points to a future of practical applications for quantum processors linked with quantum sensors.
arXiv Detail & Related papers (2024-02-25T23:35:36Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - A quantum ticking self-oscillator using delayed feedback [6.887777592015404]
Research into the development of quantum self-oscillation has received much interest.
We first design a linear quantum SSO which exhibits perfect oscillation without phase diffusion.
We then explore a nonlinear delayed quantum SSO but find it exhibits dephasing similar to previously studied non-delayed systems.
arXiv Detail & Related papers (2023-07-27T01:01:07Z) - Measurement-induced entanglement and teleportation on a noisy quantum
processor [105.44548669906976]
We investigate measurement-induced quantum information phases on up to 70 superconducting qubits.
We use a duality mapping, to avoid mid-circuit measurement and access different manifestations of the underlying phases.
Our work demonstrates an approach to realize measurement-induced physics at scales that are at the limits of current NISQ processors.
arXiv Detail & Related papers (2023-03-08T18:41:53Z) - Compressed quantum error mitigation [0.0]
We introduce a quantum error mitigation technique based on probabilistic error cancellation to eliminate errors which have accumulated during the application of a quantum circuit.
For a simple noise model, we show that efficient, local denoisers can be found, and we demonstrate their effectiveness for the digital quantum simulation of the time evolution of simple spin chains.
arXiv Detail & Related papers (2023-02-10T19:00:02Z) - Accelerating relaxation in Markovian open quantum systems through
quantum reset processes [0.0]
We claim that using quantum reset, a common and important operation in quantum timescales, is able to be accelerated significantly.
This faster relaxation induced by the reset protocol is reminiscent of the quantum Mpemba effect.
Our new strategy to accelerate relaxations may also be applied to closed quantum systems or even some non-Markovian open quantum systems.
arXiv Detail & Related papers (2022-12-21T16:31:27Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Google's recent quantum supremacy experiment heralded a transition point where quantum computing performed a computational task, random circuit sampling.
We examine the constraints of the observed quantum runtime advantage in a larger number of qubits and gates.
arXiv Detail & Related papers (2020-05-05T20:11:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.