論文の概要: VI3DRM:Towards meticulous 3D Reconstruction from Sparse Views via Photo-Realistic Novel View Synthesis
- arxiv url: http://arxiv.org/abs/2409.08207v1
- Date: Thu, 12 Sep 2024 16:47:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 15:45:03.433613
- Title: VI3DRM:Towards meticulous 3D Reconstruction from Sparse Views via Photo-Realistic Novel View Synthesis
- Title(参考訳): VI3DRM:フォトリアリスティックノベルビュー合成によるスパースビューからの細かな3次元再構成
- Authors: Hao Chen, Jiafu Wu, Ying Jin, Jinlong Peng, Xiaofeng Mao, Mingmin Chi, Mufeng Yao, Bo Peng, Jian Li, Yun Cao,
- Abstract要約: 視覚的等方性3D再構成モデル (VI3DRM) は、一貫した立体空間内で動作するスパースビュー3D再構成モデルである。
セマンティック情報、色、材料特性、照明の切り離しを容易にすることで、VI3DRMは極めてリアルな画像を生成することができる。
- 参考スコア(独自算出の注目度): 22.493542492218303
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, methods like Zero-1-2-3 have focused on single-view based 3D reconstruction and have achieved remarkable success. However, their predictions for unseen areas heavily rely on the inductive bias of large-scale pretrained diffusion models. Although subsequent work, such as DreamComposer, attempts to make predictions more controllable by incorporating additional views, the results remain unrealistic due to feature entanglement in the vanilla latent space, including factors such as lighting, material, and structure. To address these issues, we introduce the Visual Isotropy 3D Reconstruction Model (VI3DRM), a diffusion-based sparse views 3D reconstruction model that operates within an ID consistent and perspective-disentangled 3D latent space. By facilitating the disentanglement of semantic information, color, material properties and lighting, VI3DRM is capable of generating highly realistic images that are indistinguishable from real photographs. By leveraging both real and synthesized images, our approach enables the accurate construction of pointmaps, ultimately producing finely textured meshes or point clouds. On the NVS task, tested on the GSO dataset, VI3DRM significantly outperforms state-of-the-art method DreamComposer, achieving a PSNR of 38.61, an SSIM of 0.929, and an LPIPS of 0.027. Code will be made available upon publication.
- Abstract(参考訳): 最近、Zero-1-2-3のような手法は、シングルビューベースの3D再構成に焦点を合わせており、目覚ましい成功を収めている。
しかし、その未確認領域に対する予測は、大規模な事前学習拡散モデルの帰納バイアスに大きく依存している。
その後のDreamComposerのような研究は、追加の視点を取り入れて予測をより制御可能にしようとするが、その結果は、照明、材料、構造などの要因を含むバニラ潜在空間における特徴の絡み合いのため、現実的ではないままである。
これらの問題に対処するために、拡散型スパースビュー3D再構成モデルであるVisual Isotropy 3D Restruction Model (VI3DRM)を導入する。
セマンティック情報、色、材料特性、照明の切り離しを容易にすることで、VI3DRMは実際の写真と区別できない非常にリアルな画像を生成することができる。
実画像と合成画像の両方を活用することで、ポイントマップの正確な構築を可能にし、最終的には微細なテクスチャ化されたメッシュやポイントクラウドを生成する。
GSOデータセットでテストされたNVSタスクでは、VI3DRMは最先端のDreamComposerよりも優れており、PSNRは38.61、SSIMは0.929、LPIPSは0.027である。
コードは出版時に公開されます。
関連論文リスト
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - VCD-Texture: Variance Alignment based 3D-2D Co-Denoising for Text-Guided Texturing [22.39760469467524]
本研究では,2次元拡散モデルと3次元拡散モデルの間のモーダルギャップに対処する分散テクスチャ合成を提案する。
我々は、競合する領域との詳細な関係を改善するために、塗装モジュールを提示する。
論文 参考訳(メタデータ) (2024-07-05T12:11:33Z) - Mixed Diffusion for 3D Indoor Scene Synthesis [55.94569112629208]
混合離散連続拡散モデルアーキテクチャであるMiDiffusionを提案する。
シーンレイアウトを2次元のフロアプランとオブジェクトの集合で表現し、それぞれがそのカテゴリ、場所、サイズ、方向で定義する。
実験により,MiDiffusionは床条件下での3次元シーン合成において,最先端の自己回帰モデルや拡散モデルよりもかなり優れていることが示された。
論文 参考訳(メタデータ) (2024-05-31T17:54:52Z) - LAM3D: Large Image-Point-Cloud Alignment Model for 3D Reconstruction from Single Image [64.94932577552458]
大規模再構成モデルは、単一または複数入力画像から自動3Dコンテンツ生成の領域において大きな進歩を遂げている。
彼らの成功にもかかわらず、これらのモデルはしばしば幾何学的不正確な3Dメッシュを生成し、画像データからのみ3D形状を推論する固有の課題から生まれた。
生成した3Dメッシュの忠実度を高めるために3Dポイントクラウドデータを利用する新しいフレームワークであるLarge Image and Point Cloud Alignment Model (LAM3D)を導入する。
論文 参考訳(メタデータ) (2024-05-24T15:09:12Z) - 2L3: Lifting Imperfect Generated 2D Images into Accurate 3D [16.66666619143761]
マルチビュー(MV)3次元再構成は,生成したMV画像を一貫した3次元オブジェクトに融合させる,有望なソリューションである。
しかし、生成された画像は、通常、一貫性のない照明、不整合幾何学、スパースビューに悩まされ、復元の質が低下する。
本稿では, 内在的分解誘導, 過渡的モノ先行誘導, および3つの問題に対処するための視認性向上を活用する新しい3次元再構成フレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T02:30:31Z) - Sparse3D: Distilling Multiview-Consistent Diffusion for Object
Reconstruction from Sparse Views [47.215089338101066]
スパースビュー入力に適した新しい3D再構成手法であるスパース3Dを提案する。
提案手法は,多視点拡散モデルから頑健な先行情報を抽出し,ニューラルラディアンス場を改良する。
強力な画像拡散モデルから2Dプリエントをタップすることで、我々の統合モデルは、常に高品質な結果をもたらす。
論文 参考訳(メタデータ) (2023-08-27T11:52:00Z) - Differentiable Blocks World: Qualitative 3D Decomposition by Rendering
Primitives [70.32817882783608]
本稿では,3次元プリミティブを用いて,シンプルでコンパクトで動作可能な3次元世界表現を実現する手法を提案する。
既存の3次元入力データに依存するプリミティブ分解法とは異なり,本手法は画像を直接操作する。
得られたテクスチャ化されたプリミティブは入力画像を忠実に再構成し、視覚的な3Dポイントを正確にモデル化する。
論文 参考訳(メタデータ) (2023-07-11T17:58:31Z) - Generative Novel View Synthesis with 3D-Aware Diffusion Models [96.78397108732233]
単一入力画像から3D対応の新規ビュー合成のための拡散モデルを提案する。
提案手法は既存の2次元拡散バックボーンを利用するが,重要な点として,幾何学的先行を3次元特徴体積の形で組み込む。
新たなビュー生成に加えて,本手法は3次元一貫性シーケンスを自己回帰的に合成する機能を備えている。
論文 参考訳(メタデータ) (2023-04-05T17:15:47Z) - Structured 3D Features for Reconstructing Controllable Avatars [43.36074729431982]
パラメトリックな統計的メッシュ表面からサンプリングされた高密度な3次元点に画素整列画像特徴をプールする,新しい暗黙の3次元表現に基づくモデルであるStructured 3D Featuresを紹介する。
本研究では,S3Fモデルがモノクロ3D再構成やアルベド,シェーディング推定など,これまでの課題を超越していることを示す。
論文 参考訳(メタデータ) (2022-12-13T18:57:33Z) - RiCS: A 2D Self-Occlusion Map for Harmonizing Volumetric Objects [68.85305626324694]
カメラ空間における光マーチング (RiCS) は、3次元における前景物体の自己閉塞を2次元の自己閉塞マップに表現する新しい手法である。
表現マップは画像の質を高めるだけでなく,時間的コヒーレントな複雑な影効果をモデル化できることを示す。
論文 参考訳(メタデータ) (2022-05-14T05:35:35Z) - An Effective Loss Function for Generating 3D Models from Single 2D Image
without Rendering [0.0]
微分レンダリングは、シングルビュー3Dレコンストラクションに適用できる非常に成功した技術である。
電流は、ある3d再構成対象のレンダリング画像と、与えられたマッチング視点からの接地画像との間のピクセルによる損失を利用して、3d形状のパラメータを最適化する。
再構成された3次元点群の投影が地上真理物体のシルエットをどの程度覆うかを評価する新しい効果的な損失関数を提案する。
論文 参考訳(メタデータ) (2021-03-05T00:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。