論文の概要: StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction
- arxiv url: http://arxiv.org/abs/2409.08281v1
- Date: Sun, 25 Aug 2024 00:50:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-22 21:50:24.072339
- Title: StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction
- Title(参考訳): StockTime: 株価予測のための大規模言語モデルアーキテクチャ
- Authors: Shengkun Wang, Taoran Ji, Linhan Wang, Yanshen Sun, Shang-Ching Liu, Amit Kumar, Chang-Tien Lu,
- Abstract要約: 株価時系列データに特化して設計された新しいLCMベースのアーキテクチャであるStockTimeを紹介する。
最近のFinLLMとは異なり、StockTimeは特に株価時系列データのために設計されている。
このマルチモーダルデータを融合させることで、StockTimeは任意の見返り期間の株価を効果的に予測する。
- 参考スコア(独自算出の注目度): 13.52020491768311
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The stock price prediction task holds a significant role in the financial domain and has been studied for a long time. Recently, large language models (LLMs) have brought new ways to improve these predictions. While recent financial large language models (FinLLMs) have shown considerable progress in financial NLP tasks compared to smaller pre-trained language models (PLMs), challenges persist in stock price forecasting. Firstly, effectively integrating the modalities of time series data and natural language to fully leverage these capabilities remains complex. Secondly, FinLLMs focus more on analysis and interpretability, which can overlook the essential features of time series data. Moreover, due to the abundance of false and redundant information in financial markets, models often produce less accurate predictions when faced with such input data. In this paper, we introduce StockTime, a novel LLM-based architecture designed specifically for stock price data. Unlike recent FinLLMs, StockTime is specifically designed for stock price time series data. It leverages the natural ability of LLMs to predict the next token by treating stock prices as consecutive tokens, extracting textual information such as stock correlations, statistical trends and timestamps directly from these stock prices. StockTime then integrates both textual and time series data into the embedding space. By fusing this multimodal data, StockTime effectively predicts stock prices across arbitrary look-back periods. Our experiments demonstrate that StockTime outperforms recent LLMs, as it gives more accurate predictions while reducing memory usage and runtime costs.
- Abstract(参考訳): 株価予測タスクは金融分野で重要な役割を担い、長い間研究されてきた。
近年、大きな言語モデル(LLM)がこれらの予測を改善する新しい方法をもたらしている。
最近の金融大規模言語モデル (FinLLMs) は、より小さな事前学習型言語モデル (PLMs) と比較して、財政的NLPタスクのかなりの進歩を示しているが、株価予測では課題が続いている。
第一に、これらの機能を完全に活用するために時系列データと自然言語のモダリティを効果的に統合することは、依然として複雑である。
第二に、FinLLMsは分析と解釈可能性に重点を置いており、時系列データの本質的な特徴を見落としることができる。
さらに、金融市場では誤情報や冗長な情報が豊富にあるため、そのような入力データに直面した場合、モデルは精度の低い予測を行うことが多い。
本稿では,株価データに特化して設計された新しいLCMアーキテクチャであるStockTimeを紹介する。
最近のFinLLMとは異なり、StockTimeは特に株価時系列データのために設計されている。
LLMの自然な能力を活用して、株価を連続したトークンとして扱い、これらの株価から直接ストック相関、統計トレンド、タイムスタンプなどのテキスト情報を抽出することで、次のトークンを予測する。
StockTimeはテキストデータと時系列データを埋め込み空間に統合する。
このマルチモーダルデータを融合させることで、StockTimeは任意の見返り期間の株価を効果的に予測する。
実験の結果,StockTimeはメモリ使用量や実行時コストを削減しつつ,より正確な予測を可能にするため,最近のLCMよりも優れていることがわかった。
関連論文リスト
- BreakGPT: Leveraging Large Language Models for Predicting Asset Price Surges [55.2480439325792]
本稿では,時系列予測や資産価格の急上昇の予測に特化して,新たな大規模言語モデル(LLM)アーキテクチャであるBreakGPTを紹介する。
我々は、最小限のトレーニングで財務予測を行うための有望なソリューションとしてBreakGPTを紹介し、局所的およびグローバルな時間的依存関係をキャプチャする強力な競合相手として紹介する。
論文 参考訳(メタデータ) (2024-11-09T05:40:32Z) - Large Language Models for Financial Aid in Financial Time-series Forecasting [0.4218593777811082]
金融支援の時系列予測は、限られた歴史的データセットと高次元財務情報のために困難である。
我々は、従来のアプローチよりも優れた性能を示すために、事前訓練されたLPM(GPT-2をバックボーンとする)、トランスフォーマー、線形モデルなど、最先端の時系列モデルを用いている。
論文 参考訳(メタデータ) (2024-10-24T12:41:47Z) - Text2TimeSeries: Enhancing Financial Forecasting through Time Series Prediction Updates with Event-Driven Insights from Large Language Models [9.991327369572819]
本稿では,関連事象に関するテキスト情報を組み込んだ協調モデリングフレームワークを提案する。
我々は、将来の変更に関する大規模言語モデルの直感を活用して、実数時系列の予測を更新する。
論文 参考訳(メタデータ) (2024-07-04T07:21:38Z) - AlphaFin: Benchmarking Financial Analysis with Retrieval-Augmented Stock-Chain Framework [48.3060010653088]
我々はAlphaFinデータセットをリリースし、従来の研究データセット、リアルタイム財務データ、手書きのチェーン・オブ・プリート(CoT)データを組み合わせています。
次に、AlphaFinデータセットを使用して、金融分析タスクを効果的に処理するために、Stock-Chainと呼ばれる最先端の手法をベンチマークします。
論文 参考訳(メタデータ) (2024-03-19T09:45:33Z) - Time-LLM: Time Series Forecasting by Reprogramming Large Language Models [110.20279343734548]
時系列予測は多くの実世界の力学系において重要な意味を持つ。
時系列予測のための大規模言語モデルを再利用するための再プログラミングフレームワークであるTime-LLMを提案する。
Time-LLMは、最先端の特殊な予測モデルよりも優れた、強力な時系列学習者である。
論文 参考訳(メタデータ) (2023-10-03T01:31:25Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Leveraging Vision-Language Models for Granular Market Change Prediction [5.54780083433538]
本研究は,処理したストックデータの画像およびバイト単位の数値表現を利用して,市場の動きを根本的に新しいアプローチでモデル化し,予測することを提案する。
我々は、ドイツ株指数の時間ごとの株価データについて大規模な実験を行い、過去の株価データを用いて株価予測に基づいて様々なアーキテクチャを評価する。
評価の結果,ストックデータのテキスト(バイト)表現に基づく新しい手法が,画像の深層学習ベースラインを著しく上回ることがわかった。
論文 参考訳(メタデータ) (2023-01-17T19:37:19Z) - Real-time Forecasting of Time Series in Financial Markets Using
Sequentially Trained Many-to-one LSTMs [0.304585143845864]
2つのLSTMをトレーニングし、例えば、以前のデータのT$タイムステップをトレーニングし、1回だけ前に進むことを予測します。
1つのLSTMは最適なエポック数を見つけるために使用されるが、第2のLSTMは予測するエポック数だけを訓練する。
我々は、現在の予測を次の予測のためのトレーニングセットとして扱い、同じLSTMを訓練する。
論文 参考訳(メタデータ) (2022-05-10T05:18:45Z) - Low-Rank Temporal Attention-Augmented Bilinear Network for financial
time-series forecasting [93.73198973454944]
ディープラーニングモデルは、金融時系列データの予測問題など、さまざまな領域から来る多くの問題において、大幅なパフォーマンス改善をもたらしている。
近年,制限順序書の時系列予測の効率的かつ高性能なモデルとして,時間的注意強化バイリニアネットワークが提案されている。
本稿では,モデルの低ランクテンソル近似を提案し,トレーニング可能なパラメータの数をさらに削減し,その速度を向上する。
論文 参考訳(メタデータ) (2021-07-05T10:15:23Z) - Price graphs: Utilizing the structural information of financial time
series for stock prediction [4.4707451544733905]
株価予測に関する両問題に対処する新しい枠組みを提案する。
時系列を複雑なネットワークに変換するという点では、市場価格をグラフに変換する。
予測モデル入力として時間点間の関係を表すためにグラフ埋め込みを用いる。
論文 参考訳(メタデータ) (2021-06-04T14:46:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。