論文の概要: Real-time Forecasting of Time Series in Financial Markets Using
Sequentially Trained Many-to-one LSTMs
- arxiv url: http://arxiv.org/abs/2205.04678v1
- Date: Tue, 10 May 2022 05:18:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-14 18:50:47.522325
- Title: Real-time Forecasting of Time Series in Financial Markets Using
Sequentially Trained Many-to-one LSTMs
- Title(参考訳): 連続学習多対一LSTMを用いた金融市場における時系列のリアルタイム予測
- Authors: Kelum Gajamannage and Yonggi Park
- Abstract要約: 2つのLSTMをトレーニングし、例えば、以前のデータのT$タイムステップをトレーニングし、1回だけ前に進むことを予測します。
1つのLSTMは最適なエポック数を見つけるために使用されるが、第2のLSTMは予測するエポック数だけを訓練する。
我々は、現在の予測を次の予測のためのトレーニングセットとして扱い、同じLSTMを訓練する。
- 参考スコア(独自算出の注目度): 0.304585143845864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Financial markets are highly complex and volatile; thus, learning about such
markets for the sake of making predictions is vital to make early alerts about
crashes and subsequent recoveries. People have been using learning tools from
diverse fields such as financial mathematics and machine learning in the
attempt of making trustworthy predictions on such markets. However, the
accuracy of such techniques had not been adequate until artificial neural
network (ANN) frameworks were developed. Moreover, making accurate real-time
predictions of financial time series is highly subjective to the ANN
architecture in use and the procedure of training it. Long short-term memory
(LSTM) is a member of the recurrent neural network family which has been widely
utilized for time series predictions. Especially, we train two LSTMs with a
known length, say $T$ time steps, of previous data and predict only one time
step ahead. At each iteration, while one LSTM is employed to find the best
number of epochs, the second LSTM is trained only for the best number of epochs
to make predictions. We treat the current prediction as in the training set for
the next prediction and train the same LSTM. While classic ways of training
result in more error when the predictions are made further away in the test
period, our approach is capable of maintaining a superior accuracy as training
increases when it proceeds through the testing period. The forecasting accuracy
of our approach is validated using three time series from each of the three
diverse financial markets: stock, cryptocurrency, and commodity. The results
are compared with those of an extended Kalman filter, an autoregressive model,
and an autoregressive integrated moving average model.
- Abstract(参考訳): 金融市場は高度に複雑で不安定であり、このような市場について予測のために学ぶことは、クラッシュやその後の回復を早期に警告する上で不可欠である。
金融数学や機械学習といった様々な分野の学習ツールを使って、そのような市場で信頼できる予測をしようとしている。
しかし、人工ニューラルネットワーク(ann)フレームワークが開発されるまでは、この技術の精度は十分ではなかった。
さらに、財務時系列の正確なリアルタイム予測を行うことは、使用中のANNアーキテクチャとその訓練手順に非常に適している。
長期記憶(Long Short-term memory, LSTM)は、時系列予測に広く利用されているリカレントニューラルネットワークファミリーのメンバーである。
特に、既知の長さを持つ2つのLSTM、例えば、以前のデータのT$タイムステップをトレーニングし、わずか1回だけ前進を予測します。
各イテレーションにおいて、1つのLSTMが最適なエポック数を見つけるために使用される一方で、第2のLSTMは予測するエポック数だけを訓練する。
我々は、現在の予測を次の予測のためのトレーニングセットとして扱い、同じLSTMを訓練する。
従来のトレーニング手法では,テスト期間中に予測がさらに遠ざかると誤差が大きくなるが,本手法では,テスト期間中にトレーニングが進むにつれて,精度が向上する。
我々のアプローチの予測精度は、株式、暗号通貨、商品の3つの異なる金融市場の3つの時系列を用いて検証される。
その結果,拡張カルマンフィルタ,自己回帰モデル,自己回帰的統合移動平均モデルと比較した。
関連論文リスト
- Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
在庫価格予測のためのディープラーニングモデルと従来の統計手法の比較分析は、ナイジェリア証券取引所のデータを用いている。
深層学習モデル、特にLSTMは、データの複雑な非線形パターンをキャプチャすることで従来の手法より優れている。
この結果は、金融予測と投資戦略を改善するための深層学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-09-29T11:20:20Z) - StockTime: A Time Series Specialized Large Language Model Architecture for Stock Price Prediction [13.52020491768311]
株価時系列データに特化して設計された新しいLCMベースのアーキテクチャであるStockTimeを紹介する。
最近のFinLLMとは異なり、StockTimeは特に株価時系列データのために設計されている。
このマルチモーダルデータを融合させることで、StockTimeは任意の見返り期間の株価を効果的に予測する。
論文 参考訳(メタデータ) (2024-08-25T00:50:33Z) - Indian Stock Market Prediction using Augmented Financial Intelligence ML [0.0]
本稿では,Superforecasters予測を付加した機械学習アルゴリズムを用いた価格予測モデルを提案する。
これらのモデルは平均絶対誤差を用いて予測精度を決定する。
主な目標は、予測不可能な変化や株価の変化を予想するスーパープレキャストの特定と予測の追跡である。
論文 参考訳(メタデータ) (2024-07-02T12:58:50Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Making Pre-trained Language Models both Task-solvers and
Self-calibrators [52.98858650625623]
プレトレーニング言語モデル(PLM)は、様々な現実世界のシステムのバックボーンとして機能する。
以前の研究は、余分なキャリブレーションタスクを導入することでこの問題を緩和できることを示している。
課題に対処するためのトレーニングアルゴリズムLM-TOASTを提案する。
論文 参考訳(メタデータ) (2023-07-21T02:51:41Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Univariate and Multivariate LSTM Model for Short-Term Stock Market
Prediction [1.6114012813668934]
本稿では,インド企業2社の短期株価予測のための2つの異なる入力アプローチを持つLSTMモデルを提案する。
10年間の歴史的データ(2012-2021)を,ヤフー金融のウェブサイトから抽出し,提案手法の分析を行った。
論文 参考訳(メタデータ) (2022-05-08T07:01:12Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Long Short-Term Memory Neural Network for Financial Time Series [0.0]
株価変動の予測のために,単体および並列長短期記憶ニューラルネットワークのアンサンブルを提案する。
ストレートなトレーディング戦略では、ランダムに選択されたポートフォリオと指数のすべての株を含むポートフォリオを比較すると、LSTMアンサンブルから得られたポートフォリオが平均的なリターンと時間とともに高い累積リターンを提供することを示している。
論文 参考訳(メタデータ) (2022-01-20T15:17:26Z) - Bilinear Input Normalization for Neural Networks in Financial
Forecasting [101.89872650510074]
本稿では,高頻度金融時系列を扱うディープニューラルネットワークのための新しいデータ駆動正規化手法を提案する。
提案手法は,財務時系列のバイモーダル特性を考慮したものである。
我々の実験は最先端のニューラルネットワークと高周波データを用いて行われ、他の正規化技術よりも大幅に改善された。
論文 参考訳(メタデータ) (2021-09-01T07:52:03Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。