論文の概要: Real or Robotic? Assessing Whether LLMs Accurately Simulate Qualities of Human Responses in Dialogue
- arxiv url: http://arxiv.org/abs/2409.08330v1
- Date: Thu, 12 Sep 2024 18:00:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:46:54.785188
- Title: Real or Robotic? Assessing Whether LLMs Accurately Simulate Qualities of Human Responses in Dialogue
- Title(参考訳): リアルかロボットか : LLMが対話における人間の反応の質を正確にシミュレートするかどうか
- Authors: Johnathan Ivey, Shivani Kumar, Jiayu Liu, Hua Shen, Sushrita Rakshit, Rohan Raju, Haotian Zhang, Aparna Ananthasubramaniam, Junghwan Kim, Bowen Yi, Dustin Wright, Abraham Israeli, Anders Giovanni Møller, Lechen Zhang, David Jurgens,
- Abstract要約: 我々はWildChatデータセットから10万対のLLM-LLMと人間-LLM対話の大規模データセットを生成する。
シミュレーションと人間のインタラクションの間には比較的低いアライメントが見られ、複数のテキストの性質に沿って体系的な相違が示される。
- 参考スコア(独自算出の注目度): 25.89926022671521
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Studying and building datasets for dialogue tasks is both expensive and time-consuming due to the need to recruit, train, and collect data from study participants. In response, much recent work has sought to use large language models (LLMs) to simulate both human-human and human-LLM interactions, as they have been shown to generate convincingly human-like text in many settings. However, to what extent do LLM-based simulations \textit{actually} reflect human dialogues? In this work, we answer this question by generating a large-scale dataset of 100,000 paired LLM-LLM and human-LLM dialogues from the WildChat dataset and quantifying how well the LLM simulations align with their human counterparts. Overall, we find relatively low alignment between simulations and human interactions, demonstrating a systematic divergence along the multiple textual properties, including style and content. Further, in comparisons of English, Chinese, and Russian dialogues, we find that models perform similarly. Our results suggest that LLMs generally perform better when the human themself writes in a way that is more similar to the LLM's own style.
- Abstract(参考訳): 対話タスクのためのデータセットの学習と構築は、研究参加者からデータを集め、訓練し、収集する必要があるため、費用も時間もかかる。
これに対し、近年の研究では、人間と人の両方のLLMの相互作用をシミュレートするために、大きな言語モデル(LLM)の使用を模索している。
しかし、LLMに基づくシミュレーションは人間の対話をどの程度反映しているか?
本研究では,WildChatデータセットから10万対のLLM-LLMと人-LLM対話の大規模データセットを生成し,LLMシミュレーションが人間とどのように一致しているかを定量化する。
全体として、シミュレーションと人間のインタラクションのアライメントは比較的低く、スタイルや内容を含む複数のテキスト特性に沿って体系的な相違を示す。
さらに、英語、中国語、ロシア語の対話と比較すると、モデルも同様に機能することがわかった。
以上の結果から,LLM自体がLLMのスタイルに類似した書き方で書く場合,LLMの動作は概して良好であることが示唆された。
関連論文リスト
- NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
我々はジャーナリストのインタビューに焦点をあて、コミュニケーションの基盤と豊富なデータに富んだドメインに焦点をあてる。
我々はNPRとCNNから4万人の2人によるインフォメーションインタビューのデータセットをキュレートする。
LLMは、人間のインタビュアーよりも、認識を使い、より高いレベルの質問に目を向ける可能性がはるかに低い。
論文 参考訳(メタデータ) (2024-11-21T01:37:38Z) - Self-Directed Turing Test for Large Language Models [56.64615470513102]
チューリングテストは、自然言語の会話においてAIが人間のような振る舞いを示すことができるかどうかを調べる。
従来のチューリングテストでは、各参加者が1回に1つのメッセージだけを送信する厳格な対話形式を採用している。
本稿では,バーストダイアログ形式を用いた自己指示チューリングテストを提案する。
論文 参考訳(メタデータ) (2024-08-19T09:57:28Z) - LLM Roleplay: Simulating Human-Chatbot Interaction [52.03241266241294]
本研究では,人間とチャットボットの対話をシミュレートする多元多元対話を自動生成する,目標指向のペルソナに基づく手法を提案する。
本手法は,人間とチャットボットの対話を高い相違率でシミュレートすることができる。
論文 参考訳(メタデータ) (2024-07-04T14:49:46Z) - Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models [66.24055500785657]
従来のターンベースのチャットシステムは、ユーザが応答を生成している間に、システムが言葉で対話することを防ぐ。
これらの制限を克服するため,既存のLCMをユーザを聴きながら出力を生成し,ユーザに対して即時フィードバックを提供する。
クエリとレスポンスの時間スライスを交互に行うデータセットを構築し、インスタントインタラクションにおける典型的なフィードバックタイプをカバーする。
論文 参考訳(メタデータ) (2024-06-22T03:20:10Z) - Do Language Models Enjoy Their Own Stories? Prompting Large Language Models for Automatic Story Evaluation [15.718288693929019]
大規模言語モデル(LLM)は多くのNLPタスクで最先端のパフォーマンスを達成する。
LLMがヒトアノテーターの代用として使用できるかどうかを検討した。
LLMはシステムレベルの評価において,現在の自動測定値よりも優れていますが,十分な説明が得られていないことが分かりました。
論文 参考訳(メタデータ) (2024-05-22T15:56:52Z) - DuetSim: Building User Simulator with Dual Large Language Models for Task-Oriented Dialogues [7.765092134290888]
本稿では,大規模言語モデルを活用することで,タスク指向対話の複雑な要求に対処する新しいフレームワークであるDuetSimを紹介する。
DuetSim は2つの LLM をタンデムで採用することで従来の手法とは異なっている。
提案手法の有効性を,MultiWOZデータセットを用いた広範囲な実験により検証し,応答品質と正しさの向上を強調した。
論文 参考訳(メタデータ) (2024-05-16T06:24:31Z) - Bootstrapping LLM-based Task-Oriented Dialogue Agents via Self-Talk [11.706292228586332]
大規模言語モデル(LLM)は強力な対話エージェントであるが、特定の機能の実現に特化することは困難である。
本稿では,様々な役割における会話に係わるLLMを通して,より効果的なデータ収集手法を提案する。
このアプローチはLLMの“セルフトーク”を通じてトレーニングデータを生成し,教師付き微調整に利用することができる。
論文 参考訳(メタデータ) (2024-01-10T09:49:10Z) - Let the LLMs Talk: Simulating Human-to-Human Conversational QA via
Zero-Shot LLM-to-LLM Interactions [19.365615476223635]
対話型質問応答システムの目的は,ユーザとの対話によって情報を取得する対話型検索システムを作ることである。
既存の作業では、人間の注釈を使って質問者(学生)と回答者(教師)の役割を演じる。
教師と学生のインタラクションをシミュレーションするためにゼロショット学習者LLMを用いたシミュレーションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-05T17:38:02Z) - Zero-Shot Goal-Directed Dialogue via RL on Imagined Conversations [70.7884839812069]
大規模言語モデル(LLM)は、多くの自然言語タスクに対する強力で一般的な解決策として登場した。
しかしながら、言語生成の最も重要なアプリケーションの多くは対話的であり、エージェントは望ましい結果に達するために相手と話し合わなければならない。
本研究では,そのような目標指向対話に対して,RLでLLMを適応させる新しい手法について検討する。
論文 参考訳(メタデータ) (2023-11-09T18:45:16Z) - BotChat: Evaluating LLMs' Capabilities of Having Multi-Turn Dialogues [72.65163468440434]
本報告では,人間型マルチターンチャットのための既存大規模言語モデルの予備的評価を行う。
そこで我々は,ChatSEEDに基づくマルチターン対話を発話によって生成する大規模言語モデル(LLM)を提案する。
GPT-4は優れた品質の人型多元対話を生成できるが、その性能は著しく上回っている。
論文 参考訳(メタデータ) (2023-10-20T16:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。