論文の概要: LightSABRE: A Lightweight and Enhanced SABRE Algorithm
- arxiv url: http://arxiv.org/abs/2409.08368v1
- Date: Thu, 12 Sep 2024 19:19:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:37:11.431748
- Title: LightSABRE: A Lightweight and Enhanced SABRE Algorithm
- Title(参考訳): LightSABRE:軽量で拡張されたSABREアルゴリズム
- Authors: Henry Zou, Matthew Treinish, Kevin Hartman, Alexander Ivrii, Jake Lishman,
- Abstract要約: 我々は,実行効率と回路品質の両方を向上するSABREアルゴリズムの大幅な拡張であるLightSABREを紹介する。
我々は,Qiskit 1.2.0のアルゴリズムのバージョンを,Qiskit 0.20.1の実装の約200倍の速度で実現した。
- 参考スコア(独自算出の注目度): 39.814077130655505
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce LightSABRE, a significant enhancement of the SABRE algorithm that advances both runtime efficiency and circuit quality. LightSABRE addresses the increasing demands of modern quantum hardware, which can now accommodate complex scenarios, and circuits with millions of gates. Through iterative development within Qiskit, primarily using the Rust programming language, we have achieved a version of the algorithm in Qiskit 1.2.0 that is approximately 200 times faster than the implementation in Qiskit 0.20.1, which already introduced key improvements like the release valve mechanism. Additionally, when compared to the SABRE algorithm presented in Li et al., LightSABRE delivers an average decrease of 18.9\% in SWAP gate count across the same benchmark circuits. Unlike SABRE, which struggles with scalability and convergence on large circuits, LightSABRE delivers consistently high-quality routing solutions, enabling the efficient execution of large quantum circuits on near-term and future quantum devices. LightSABRE's improvements in speed, scalability, and quality position it as a critical tool for optimizing quantum circuits in the context of evolving quantum hardware and error correction techniques.
- Abstract(参考訳): 我々は,実行効率と回路品質の両方を向上するSABREアルゴリズムの大幅な拡張であるLightSABREを紹介する。
LightSABREは、複雑なシナリオや数百万のゲートを持つ回路に対応できる現代の量子ハードウェアの需要の増加に対処する。
主にRust言語を使用して、Qiskit内で反復開発を行うことで、Qiskit 1.2.0のアルゴリズムのバージョンを達成しました。これは、リリースバルブ機構のような重要な改善をすでに導入している、Qiskit 0.20.1の実装の約200倍高速です。
加えて、Li et al で示されるSABREアルゴリズムと比較して、LightSABREは、同じベンチマーク回路でSWAPゲート数を平均 18.9 % 減少させる。
大規模回路のスケーラビリティと収束に苦慮しているSABREとは異なり、LightSABREは一貫して高品質なルーティングソリューションを提供し、近未来の量子デバイス上で大規模量子回路の効率的な実行を可能にしている。
LightSABREのスピード、スケーラビリティ、品質の向上は、進化する量子ハードウェアとエラー訂正技術の文脈で量子回路を最適化するための重要なツールとして位置づけている。
関連論文リスト
- Noise-Aware Distributed Quantum Approximate Optimization Algorithm on Near-term Quantum Hardware [2.753858051267023]
本稿では,短期量子ハードウェア上での動作に適した雑音対応分散量子近似最適化アルゴリズム(QAOA)を提案する。
我々は、現在のノイズ中間量子(NISQ)デバイスの限界に対処し、量子ビット数の制限と高いエラー率によって妨げられている。
論文 参考訳(メタデータ) (2024-07-24T14:50:01Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Fast, Scalable, Warm-Start Semidefinite Programming with Spectral
Bundling and Sketching [53.91395791840179]
我々は、大規模なSDPを解くための、証明可能な正確で高速でスケーラブルなアルゴリズムであるUnified Spectral Bundling with Sketching (USBS)を提案する。
USBSは、20億以上の決定変数を持つインスタンス上で、最先端のスケーラブルなSDP解決器よりも500倍のスピードアップを提供する。
論文 参考訳(メタデータ) (2023-12-19T02:27:22Z) - Hungarian Qubit Assignment for Optimized Mapping of Quantum Circuits on
Multi-Core Architectures [1.1288814203214292]
量子コンピュータは、これらのクラスタ間のスペーサー接続を備えた密結合量子ビットのクラスタを特徴とするモジュラーアプローチを採用することが期待されている。
複数の処理コアにキュービットを効率よく分散させることは、量子コンピューティングシステムの性能とスケーラビリティを向上させる上で重要である。
ハンガリーのQubit Assignment(HQA)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-09-21T15:48:45Z) - Toward Consistent High-fidelity Quantum Learning on Unstable Devices via
Efficient In-situ Calibration [5.0854551390284]
近未来の雑音型中間スケール量子(NISQ)時代には、高ノイズは量子コンピューティングの忠実度を著しく低下させる。
本稿では,量子パルスに基づく新しい雑音適応フレームワークQuPADを提案する。
実験により、8-10キュービットのQuPADの量子デバイス上でのランタイムは15分未満であり、パラメータシフトアプローチよりも最大270倍高速であることが示された。
論文 参考訳(メタデータ) (2023-09-12T15:39:06Z) - Scaling Quantum Approximate Optimization on Near-term Hardware [49.94954584453379]
我々は、様々なレベルの接続性を持つハードウェアアーキテクチャのための最適化回路により、期待されるリソース要求のスケーリングを定量化する。
問題の大きさと問題グラフの次数で指数関数的に増大する。
これらの問題は、ハードウェア接続性の向上や、より少ない回路層で高い性能を達成するQAOAの変更によって緩和される可能性がある。
論文 参考訳(メタデータ) (2022-01-06T21:02:30Z) - A Structured Method for Compilation of QAOA Circuits in Quantum
Computing [5.560410979877026]
2ビットゲートを並べ替える柔軟性により、コンパイラ最適化により、より深い深さ、ゲート数、忠実度で回路を生成することができる。
多次元量子アーキテクチャ上の任意のコンパイルQAOA回路に対して線形深さを保証する構造的手法を提案する。
全体として、最大1024キュービットの回路を10秒でコンパイルでき、深さ3.8倍のスピードアップ、ゲート数17%の削減、回路ESPの18倍の改善が可能である。
論文 参考訳(メタデータ) (2021-12-12T04:00:45Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。