論文の概要: Stochastic Reinforcement Learning with Stability Guarantees for Control of Unknown Nonlinear Systems
- arxiv url: http://arxiv.org/abs/2409.08382v1
- Date: Thu, 12 Sep 2024 20:07:54 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:27:26.923210
- Title: Stochastic Reinforcement Learning with Stability Guarantees for Control of Unknown Nonlinear Systems
- Title(参考訳): 未知非線形系の制御のための安定保証を用いた確率強化学習
- Authors: Thanin Quartz, Ruikun Zhou, Hans De Sterck, Jun Liu,
- Abstract要約: 本稿では,力学の局所線形表現を学習することでシステムを安定化する強化学習アルゴリズムを提案する。
本稿では,いくつかの高次元力学系におけるアルゴリズムの有効性を示す。
- 参考スコア(独自算出の注目度): 6.571209126567701
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Designing a stabilizing controller for nonlinear systems is a challenging task, especially for high-dimensional problems with unknown dynamics. Traditional reinforcement learning algorithms applied to stabilization tasks tend to drive the system close to the equilibrium point. However, these approaches often fall short of achieving true stabilization and result in persistent oscillations around the equilibrium point. In this work, we propose a reinforcement learning algorithm that stabilizes the system by learning a local linear representation ofthe dynamics. The main component of the algorithm is integrating the learned gain matrix directly into the neural policy. We demonstrate the effectiveness of our algorithm on several challenging high-dimensional dynamical systems. In these simulations, our algorithm outperforms popular reinforcement learning algorithms, such as soft actor-critic (SAC) and proximal policy optimization (PPO), and successfully stabilizes the system. To support the numerical results, we provide a theoretical analysis of the feasibility of the learned algorithm for both deterministic and stochastic reinforcement learning settings, along with a convergence analysis of the proposed learning algorithm. Furthermore, we verify that the learned control policies indeed provide asymptotic stability for the nonlinear systems.
- Abstract(参考訳): 非線形システムのための安定化コントローラの設計は、特に未知のダイナミクスを持つ高次元問題において難しい課題である。
従来の強化学習アルゴリズムを安定化タスクに適用すると、システムは平衡点に近づく傾向にある。
しかし、これらのアプローチは真の安定化を達成するには足りず、平衡点の周りで持続的な振動が起こる。
本研究では,力学の局所的線形表現を学習することでシステムを安定化する強化学習アルゴリズムを提案する。
このアルゴリズムの主な構成要素は、学習したゲインマトリックスを直接神経ポリシーに統合することである。
本稿では,いくつかの高次元力学系におけるアルゴリズムの有効性を示す。
これらのシミュレーションにおいて,本アルゴリズムは,ソフトアクタクリティカル(SAC)やPPO(Phyximal Policy Optimization)などの一般的な強化学習アルゴリズムよりも優れ,システムの安定化に成功している。
解析結果を支援するため,提案アルゴリズムの収束解析とともに,決定論的および確率的強化学習設定における学習アルゴリズムの有効性に関する理論的解析を行った。
さらに,学習した制御ポリシーが非線形システムに漸近安定性をもたらすことを検証した。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - Learning to Boost the Performance of Stable Nonlinear Systems [0.0]
クローズドループ安定性保証による性能ブースティング問題に対処する。
本手法は,安定な非線形システムのための性能ブースティング制御器のニューラルネットワーククラスを任意に学習することを可能にする。
論文 参考訳(メタデータ) (2024-05-01T21:11:29Z) - Stability and Generalization of Stochastic Compositional Gradient
Descent Algorithms [61.59448949684493]
学習例から構築した合成降下アルゴリズムの安定性と一般化解析について述べる。
SCGD と SCSC という2つの一般的な合成勾配勾配勾配アルゴリズムの均一安定性について検討した。
SCGD と SCSC の非依存的過剰リスク境界は,安定性結果と最適化誤差をトレードオフすることによって導出する。
論文 参考訳(メタデータ) (2023-07-07T02:40:09Z) - KCRL: Krasovskii-Constrained Reinforcement Learning with Guaranteed
Stability in Nonlinear Dynamical Systems [66.9461097311667]
形式的安定性を保証するモデルに基づく強化学習フレームワークを提案する。
提案手法は,特徴表現を用いて信頼区間までシステムダイナミクスを学習する。
我々は、KCRLが、基礎となる未知のシステムとの有限数の相互作用において安定化ポリシーを学ぶことが保証されていることを示す。
論文 参考訳(メタデータ) (2022-06-03T17:27:04Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
本研究では, 局所的およびグローバルな平滑化手法の性能と, 状態測定値の偏差について検討・比較する。
一般に,測度データセット全体を用いたグローバルな手法は,局所点の周辺に隣接するデータサブセットを用いる局所的手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2022-01-29T23:31:25Z) - Stability Verification in Stochastic Control Systems via Neural Network
Supermartingales [17.558766911646263]
2つの新しい側面を持つ一般非線形制御問題に対するアプローチを提案する。
我々は、A.s.asymptotic stabilityの証明にランキング・スーパーガレス(RSM)を使用し、ニューラルネットワークの学習方法を提案する。
論文 参考訳(メタデータ) (2021-12-17T13:05:14Z) - Stabilizing Dynamical Systems via Policy Gradient Methods [32.88312419270879]
完全に観察された力学系を安定化するためのモデルフリーなアルゴリズムを提案する。
本研究では,線形システムの安定化制御を効率よく行うことを証明する。
我々は,共通制御ベンチマークにおけるアプローチの有効性を実証的に評価した。
論文 参考訳(メタデータ) (2021-10-13T00:58:57Z) - Imitation Learning of Stabilizing Policies for Nonlinear Systems [1.52292571922932]
線形システムやコントローラ向けに開発された手法は,平方の和を用いて容易にコントローラに拡張できることが示されている。
予測勾配降下法とアルゴリズムの交互方向法を, 安定化模倣学習問題に対して提案する。
論文 参考訳(メタデータ) (2021-09-22T17:27:19Z) - Reinforcement Learning Policies in Continuous-Time Linear Systems [0.0]
パラメータ推定を慎重にランダムにすることで、最適行動の学習を迅速に行うオンラインポリシーを提案する。
非接触系の力学に対する鋭い安定性を証明し、準最適動作による無限小の後悔を厳密に特定する。
我々の分析は、継続的強化学習における基本的な課題に光を当て、同様の問題に対する有用な基礎となることを示唆している。
論文 参考訳(メタデータ) (2021-09-16T00:08:50Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Reinforcement Learning with Fast Stabilization in Linear Dynamical
Systems [91.43582419264763]
未知の安定化線形力学系におけるモデルベース強化学習(RL)について検討する。
本研究では,環境を効果的に探索することで,基盤システムの高速安定化を証明できるアルゴリズムを提案する。
提案アルゴリズムはエージェント環境相互作用の時間ステップで$tildemathcalO(sqrtT)$ regretを達成した。
論文 参考訳(メタデータ) (2020-07-23T23:06:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。