論文の概要: Wasserstein Distributionally Robust Multiclass Support Vector Machine
- arxiv url: http://arxiv.org/abs/2409.08409v1
- Date: Thu, 12 Sep 2024 21:40:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:17:42.968423
- Title: Wasserstein Distributionally Robust Multiclass Support Vector Machine
- Title(参考訳): ワッサースタイン分布ロバスト多クラス支持ベクトルマシン
- Authors: Michael Ibrahim, Heraldo Rozas, Nagi Gebraeel,
- Abstract要約: データの特徴が $mathbfx$ であり,そのラベルが $mathbfy$ であるような設定におけるマルチクラス分類の問題について検討する。
我々は、分散ロバストな最適化を用いて、クラマー・シンガー(CS)損失を特徴とするマルチクラスサポートベクターマシン(SVM)のロバストバージョンを開発する。
我々の数値実験は、トレーニングデータが高度に不均衡な環境で、我々のモデルが最先端のOVAモデルより優れていることを示す。
- 参考スコア(独自算出の注目度): 1.8570591025615457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the problem of multiclass classification for settings where data features $\mathbf{x}$ and their labels $\mathbf{y}$ are uncertain. We identify that distributionally robust one-vs-all (OVA) classifiers often struggle in settings with imbalanced data. To address this issue, we use Wasserstein distributionally robust optimization to develop a robust version of the multiclass support vector machine (SVM) characterized by the Crammer-Singer (CS) loss. First, we prove that the CS loss is bounded from above by a Lipschitz continuous function for all $\mathbf{x} \in \mathcal{X}$ and $\mathbf{y} \in \mathcal{Y}$, then we exploit strong duality results to express the dual of the worst-case risk problem, and we show that the worst-case risk minimization problem admits a tractable convex reformulation due to the regularity of the CS loss. Moreover, we develop a kernel version of our proposed model to account for nonlinear class separation, and we show that it admits a tractable convex upper bound. We also propose a projected subgradient method algorithm for a special case of our proposed linear model to improve scalability. Our numerical experiments demonstrate that our model outperforms state-of-the art OVA models in settings where the training data is highly imbalanced. We also show through experiments on popular real-world datasets that our proposed model often outperforms its regularized counterpart as the first accounts for uncertain labels unlike the latter.
- Abstract(参考訳): データの特徴である$\mathbf{x}$とそのラベルである$\mathbf{y}$が不確実な設定におけるマルチクラス分類の問題について検討する。
分散ロバストな1-vs-all(OVA)分類器は、不均衡なデータの設定にしばしば苦労する。
この問題に対処するために、我々は、分散ロバストな最適化を用いて、クラマー・シンガー(CS)損失を特徴とするマルチクラスサポートベクターマシン(SVM)のロバストバージョンを開発する。
まず、CS損失は、すべての$\mathbf{x} \in \mathcal{X}$および$\mathbf{y} \in \mathcal{Y}$に対して、上からリプシッツ連続函数によって有界であることが証明され、さらに、最悪のケースリスク問題の双対を表現するために強い双対性結果を利用して、CS損失の正則性により、最悪のケースリスク最小化問題が引き起こされることを示す。
さらに, 非線形クラス分離を考慮に入れた提案モデルのカーネルバージョンを開発し, トラクタブル凸上界を許容することを示す。
また,線形モデルの特殊ケースに対して,拡張性を向上させるために提案手法を提案する。
我々の数値実験は、トレーニングデータが高度に不均衡な環境で、我々のモデルは最先端のOVAモデルより優れていることを示した。
また、人気のある実世界のデータセットの実験を通して、提案されたモデルが、後者とは異なり、不確実なラベルの最初の説明として正規化されたデータセットよりも優れていることを示す。
関連論文リスト
- Computational-Statistical Gaps in Gaussian Single-Index Models [77.1473134227844]
単次元モデル(Single-Index Models)は、植木構造における高次元回帰問題である。
我々は,統計的クエリ (SQ) と低遅延多項式 (LDP) フレームワークの両方において,計算効率のよいアルゴリズムが必ずしも$Omega(dkstar/2)$サンプルを必要とすることを示した。
論文 参考訳(メタデータ) (2024-03-08T18:50:19Z) - $t^3$-Variational Autoencoder: Learning Heavy-tailed Data with Student's
t and Power Divergence [7.0479532872043755]
$t3$VAEは、学生のt-distributionsを前者、エンコーダ、デコーダに組み込んだ改良されたVAEフレームワークである。
t3$VAE は CelebA や不均衡な CIFAR-100 データセットにおいて,他のモデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2023-12-02T13:14:28Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
本稿では,低ランク構造制約下でのグラフ学習のためのフレキシブルなアルゴリズムフレームワークを提案する。
この問題は楕円分布のペナルティ化された最大推定値として表される。
楕円モデルによく適合する正定行列と定ランクの正半定行列のジオメトリを利用する。
論文 参考訳(メタデータ) (2022-10-21T13:19:45Z) - Universal and data-adaptive algorithms for model selection in linear
contextual bandits [52.47796554359261]
モデル選択の最も単純な非自明な例を考える: 単純な多重武装バンディット問題と線形文脈バンディット問題とを区別する。
データ適応的な方法で探索する新しいアルゴリズムを導入し、$mathcalO(dalpha T1- alpha)$という形式の保証を提供する。
我々のアプローチは、いくつかの仮定の下で、ネストされた線形文脈包帯のモデル選択に拡張する。
論文 参考訳(メタデータ) (2021-11-08T18:05:35Z) - Distributionally Robust Optimization with Markovian Data [8.126833795693699]
本研究では,不確実な問題パラメータの確率分布が不明なプログラムについて検討する。
本稿では,問題の目的関数と最適解を推定するために,データ駆動型分布法を提案する。
論文 参考訳(メタデータ) (2021-06-12T10:59:02Z) - Learning Gaussian Mixtures with Generalised Linear Models: Precise
Asymptotics in High-dimensions [79.35722941720734]
多クラス分類問題に対する一般化線形モデルは、現代の機械学習タスクの基本的な構成要素の1つである。
実験的リスク最小化による高次元推定器の精度を実証する。
合成データの範囲を超えて我々の理論をどのように適用できるかを論じる。
論文 参考訳(メタデータ) (2021-06-07T16:53:56Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Estimating Principal Components under Adversarial Perturbations [25.778123431786653]
本研究では,高次元統計的推定問題に対するロバストネスの自然なモデルについて検討する。
我々のモデルは、低精度機械学習や対人訓練といった新しいパラダイムによって動機付けられている。
論文 参考訳(メタデータ) (2020-05-31T20:27:19Z) - A Precise High-Dimensional Asymptotic Theory for Boosting and
Minimum-$\ell_1$-Norm Interpolated Classifiers [3.167685495996986]
本稿では,分離可能なデータの強化に関する高精度な高次元理論を確立する。
統計モデルのクラスでは、ブースティングの普遍性誤差を正確に解析する。
また, 推力試験誤差と最適ベイズ誤差の関係を明示的に説明する。
論文 参考訳(メタデータ) (2020-02-05T00:24:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。