An Intent Modeling and Inference Framework for Autonomous and Remotely Piloted Aerial Systems
- URL: http://arxiv.org/abs/2409.08472v1
- Date: Fri, 13 Sep 2024 01:57:37 GMT
- Title: An Intent Modeling and Inference Framework for Autonomous and Remotely Piloted Aerial Systems
- Authors: Kesav Kaza, Varun Mehta, Hamid Azad, Miodrag Bolic, Iraj Mantegh,
- Abstract summary: An intent modelling and inference framework is presented to assist the defense planning for protecting a geo-fence against unauthorized flights.
The concepts of critical waypoints and critical waypoint patterns are introduced and associated with a motion process to fully characterize an intent.
It is applicable to autonomous, semi-autonomous, and piloted systems in 2D and 3D environments with obstacles.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An intent modelling and inference framework is presented to assist the defense planning for protecting a geo-fence against unauthorized flights. First, a novel mathematical definition for the intent of an uncrewed aircraft system (UAS) is presented. The concepts of critical waypoints and critical waypoint patterns are introduced and associated with a motion process to fully characterize an intent. This modelling framework consists of representations of a UAS mission planner, used to plan the aircraft's motion sequence, as well as a defense planner, defined to protect the geo-fence. It is applicable to autonomous, semi-autonomous, and piloted systems in 2D and 3D environments with obstacles. The framework is illustrated by defining a library of intents for a security application. Detection and tracking of the target are presumed for formulating the intent inference problem. Multiple formulations of the decision maker's objective are discussed as part of a deep-learning-based methodology. Further, a multi-modal dynamic model for characterizing the UAS flight is discussed. This is later utilized to extract features using the interacting multiple model (IMM) filter for training the intent classifier. Finally, as part of the simulation study, an attention-based bi-directional long short-term memory (Bi-LSTM) network for intent inference is presented. The simulation experiments illustrate various aspects of the framework, including trajectory generation, radar measurement simulation, etc., in 2D and 3D environments.
Related papers
- Multi-Model 3D Registration: Finding Multiple Moving Objects in
Cluttered Point Clouds [23.923838486208524]
We investigate a variation of the 3D registration problem, named multi-model 3D registration.
In the multi-model registration problem, we are given two point clouds picturing a set of objects at different poses.
We want to simultaneously reconstruct how all objects moved between the two point clouds.
arXiv Detail & Related papers (2024-02-16T18:01:43Z) - OccNeRF: Advancing 3D Occupancy Prediction in LiDAR-Free Environments [77.0399450848749]
We propose an OccNeRF method for training occupancy networks without 3D supervision.
We parameterize the reconstructed occupancy fields and reorganize the sampling strategy to align with the cameras' infinite perceptive range.
For semantic occupancy prediction, we design several strategies to polish the prompts and filter the outputs of a pretrained open-vocabulary 2D segmentation model.
arXiv Detail & Related papers (2023-12-14T18:58:52Z) - Pixel State Value Network for Combined Prediction and Planning in
Interactive Environments [9.117828575880303]
This work proposes a deep learning methodology to combine prediction and planning.
A conditional GAN with the U-Net architecture is trained to predict two high-resolution image sequences.
Results demonstrate intuitive behavior in complex situations, such as lane changes amidst conflicting objectives.
arXiv Detail & Related papers (2023-10-11T17:57:13Z) - ST-P3: End-to-end Vision-based Autonomous Driving via Spatial-Temporal
Feature Learning [132.20119288212376]
We propose a spatial-temporal feature learning scheme towards a set of more representative features for perception, prediction and planning tasks simultaneously.
To the best of our knowledge, we are the first to systematically investigate each part of an interpretable end-to-end vision-based autonomous driving system.
arXiv Detail & Related papers (2022-07-15T16:57:43Z) - PillarGrid: Deep Learning-based Cooperative Perception for 3D Object
Detection from Onboard-Roadside LiDAR [15.195933965761645]
We propose textitPillarGrid, a novel cooperative perception method fusing information from multiple 3D LiDARs.
PillarGrid consists of four main phases: 1) cooperative preprocessing of point clouds, 2) pillar-wise voxelization and feature extraction, 3) grid-wise deep fusion of features from multiple sensors, and 4) convolutional neural network (CNN)-based augmented 3D object detection.
Extensive experimentation shows that PillarGrid outperforms the SOTA single-LiDAR-based 3D object detection methods with respect to both accuracy and range by a large margin.
arXiv Detail & Related papers (2022-03-12T02:28:41Z) - Predicting Stable Configurations for Semantic Placement of Novel Objects [37.18437299513799]
Our goal is to enable robots to repose previously unseen objects according to learned semantic relationships in novel environments.
We build our models and training from the ground up to be tightly integrated with our proposed planning algorithm for semantic placement of unknown objects.
Our approach enables motion planning for semantic rearrangement of unknown objects in scenes with varying geometry from only RGB-D sensing.
arXiv Detail & Related papers (2021-08-26T23:05:05Z) - Enabling Visual Action Planning for Object Manipulation through Latent
Space Roadmap [72.01609575400498]
We present a framework for visual action planning of complex manipulation tasks with high-dimensional state spaces.
We propose a Latent Space Roadmap (LSR) for task planning, a graph-based structure capturing globally the system dynamics in a low-dimensional latent space.
We present a thorough investigation of our framework on two simulated box stacking tasks and a folding task executed on a real robot.
arXiv Detail & Related papers (2021-03-03T17:48:26Z) - IntentNet: Learning to Predict Intention from Raw Sensor Data [86.74403297781039]
In this paper, we develop a one-stage detector and forecaster that exploits both 3D point clouds produced by a LiDAR sensor as well as dynamic maps of the environment.
Our multi-task model achieves better accuracy than the respective separate modules while saving computation, which is critical to reducing reaction time in self-driving applications.
arXiv Detail & Related papers (2021-01-20T00:31:52Z) - Risk-Averse MPC via Visual-Inertial Input and Recurrent Networks for
Online Collision Avoidance [95.86944752753564]
We propose an online path planning architecture that extends the model predictive control (MPC) formulation to consider future location uncertainties.
Our algorithm combines an object detection pipeline with a recurrent neural network (RNN) which infers the covariance of state estimates.
The robustness of our methods is validated on complex quadruped robot dynamics and can be generally applied to most robotic platforms.
arXiv Detail & Related papers (2020-07-28T07:34:30Z) - Object Goal Navigation using Goal-Oriented Semantic Exploration [98.14078233526476]
This work studies the problem of object goal navigation which involves navigating to an instance of the given object category in unseen environments.
We propose a modular system called, Goal-Oriented Semantic Exploration' which builds an episodic semantic map and uses it to explore the environment efficiently.
arXiv Detail & Related papers (2020-07-01T17:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.