論文の概要: Research on Data Right Confirmation Mechanism of Federated Learning based on Blockchain
- arxiv url: http://arxiv.org/abs/2409.08476v1
- Date: Fri, 13 Sep 2024 02:02:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 18:07:55.060150
- Title: Research on Data Right Confirmation Mechanism of Federated Learning based on Blockchain
- Title(参考訳): ブロックチェーンに基づくフェデレーション学習におけるデータ正しい確認機構に関する研究
- Authors: Xiaogang Cheng, Ren Guo,
- Abstract要約: フェデレートされた学習は、分散データマイニングと機械学習におけるプライバシ保護の問題を解決することができる。
本稿では,ブロックチェーンとスマートコントラクトに基づくデータ所有確認機構を提案する。
- 参考スコア(独自算出の注目度): 0.069060054915724
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning can solve the privacy protection problem in distributed data mining and machine learning, and how to protect the ownership, use and income rights of all parties involved in federated learning is an important issue. This paper proposes a federated learning data ownership confirmation mechanism based on blockchain and smart contract, which uses decentralized blockchain technology to save the contribution of each participant on the blockchain, and distributes the benefits of federated learning results through the blockchain. In the local simulation environment of the blockchain, the relevant smart contracts and data structures are simulated and implemented, and the feasibility of the scheme is preliminarily demonstrated.
- Abstract(参考訳): フェデレーション学習は、分散データマイニングと機械学習におけるプライバシ保護の問題を解決することができる。
本稿では、ブロックチェーンとスマートコントラクトに基づくフェデレーション学習データオーナシップ確認機構を提案する。これは、分散ブロックチェーン技術を使用して、各参加者のブロックチェーンへのコントリビューションを節約し、ブロックチェーンを通じてフェデレーション学習結果のメリットを分散する。
ブロックチェーンのローカルシミュレーション環境では、関連するスマートコントラクトとデータ構造をシミュレートし、実装し、そのスキームの有効性を予め実証する。
関連論文リスト
- Machine Learning for Blockchain Data Analysis: Progress and Opportunities [9.07520594836878]
ブロックチェーンデータセットは、例えば、人間のユーザ、自律的なプログラム、スマートコントラクトなど、現実世界のエンティティ間でのインタラクションの複数のレイヤを含んでいる。
これらのユニークな特徴は、ブロックチェーンデータ上での機械学習の機会と課題の両方を示している。
本稿は、研究者、実践者、政策立案者のための総合的な資源として機能し、このダイナミックで変革的な分野をナビゲートするためのロードマップを提供する。
論文 参考訳(メタデータ) (2024-04-28T17:18:08Z) - Enhancing Trust and Privacy in Distributed Networks: A Comprehensive Survey on Blockchain-based Federated Learning [51.13534069758711]
ブロックチェーンのような分散型アプローチは、複数のエンティティ間でコンセンサスメカニズムを実装することで、魅力的なソリューションを提供する。
フェデレートラーニング(FL)は、参加者がデータのプライバシを保護しながら、協力的にモデルをトレーニングすることを可能にする。
本稿では,ブロックチェーンのセキュリティ機能とFLのプライバシ保護モデルトレーニング機能の相乗効果について検討する。
論文 参考訳(メタデータ) (2024-03-28T07:08:26Z) - Graph Attention Network-based Block Propagation with Optimal AoI and Reputation in Web 3.0 [59.94605620983965]
我々は、ブロックチェーン対応Web 3.0のための、グラフ注意ネットワーク(GAT)ベースの信頼できるブロック伝搬最適化フレームワークを設計する。
ブロック伝搬の信頼性を実現するために,主観的論理モデルに基づく評価機構を導入する。
グラフ構造化データの処理能力に優れたGATが存在することを考慮し、GATを強化学習に利用して最適なブロック伝搬軌道を得る。
論文 参考訳(メタデータ) (2024-03-20T01:58:38Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Generative AI-enabled Blockchain Networks: Fundamentals, Applications,
and Case Study [73.87110604150315]
Generative Artificial Intelligence(GAI)は、ブロックチェーン技術の課題に対処するための有望なソリューションとして登場した。
本稿では、まずGAI技術を紹介し、そのアプリケーションの概要を説明し、GAIをブロックチェーンに統合するための既存のソリューションについて議論する。
論文 参考訳(メタデータ) (2024-01-28T10:46:17Z) - Blockchain-Based Federated Learning: Incentivizing Data Sharing and
Penalizing Dishonest Behavior [0.0]
本稿では,フェデレートラーニングにおけるデータ信頼を,InterPlanetary File System,ブロックチェーン,スマートコントラクトと統合する包括的フレームワークを提案する。
提案モデルは,データ共有プロセスの安全性と公平性を確保しつつ,フェデレーション学習モデルの精度向上に有効である。
研究論文では、MNISTデータセット上でCNNモデルをトレーニングした分散化したフェデレーション学習プラットフォームについても紹介する。
論文 参考訳(メタデータ) (2023-07-19T23:05:49Z) - A Survey on Blockchain-Based Federated Learning and Data Privacy [1.0499611180329802]
フェデレーテッド・ラーニング(Federated Learning)は、複数のクライアントがローカルな計算能力とモデルの伝達を活用して協力できるようにする、分散機械学習パラダイムである。
一方、フェデレーション学習は、ストレージ、転送、共有に使用されるプライバシー保護機構が欠如しているため、データ漏洩の欠点がある。
この調査は、ブロックチェーンベースのフェデレーション学習アーキテクチャで採用されているさまざまなデータプライバシメカニズムのパフォーマンスとセキュリティを比較することを目的としている。
論文 参考訳(メタデータ) (2023-06-29T23:43:25Z) - Federated Learning for Open Banking [42.05232310057235]
近い将来、フェデレートラーニングを用いて金融セクターに分散データオーナシップを持つことが期待できる。
この章では、オープンバンキングの文脈でフェデレートラーニングを適用する上での課題について論じる。
論文 参考訳(メタデータ) (2021-08-24T14:06:16Z) - Federated Learning using Smart Contracts on Blockchains, based on Reward
Driven Approach [0.0]
スマートコントラクトベースのブロックチェーンが、フェデレートされた学習のための非常に自然なコミュニケーションチャネルであることを示す。
我々は、各エージェントの貢献度をいかに直感的に構築し、トレーニングと報酬プロセスのライフサイクルと統合できるかを示す。
論文 参考訳(メタデータ) (2021-07-19T12:51:22Z) - Resource Management for Blockchain-enabled Federated Learning: A Deep
Reinforcement Learning Approach [54.29213445674221]
Federated Learning (BFL)は、機械学習モデル所有者(MLMO)が必要とするニューラルネットワークモデルを、モバイルデバイスが協調的にトレーニングすることを可能にする。
BFLの問題は、モバイルデバイスがシステムの寿命とトレーニング効率を低下させるエネルギーとCPUの制約を持っていることである。
我々は,Deep Reinforcement Learning (DRL) を用いて最適決定を導出することを提案する。
論文 参考訳(メタデータ) (2020-04-08T16:29:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。