Eir: Thai Medical Large Language Models
- URL: http://arxiv.org/abs/2409.08523v2
- Date: Mon, 16 Sep 2024 10:50:30 GMT
- Title: Eir: Thai Medical Large Language Models
- Authors: Yutthakorn Thiprak, Rungtam Ngodngamthaweesuk, Songtam Ngodngamtaweesuk,
- Abstract summary: Eir-8B is a large language model with 8 billion parameters designed to enhance the accuracy of handling medical tasks in the Thai language.
Human evaluation was conducted to ensure that the model adheres to care standards and provides unbiased answers.
The model is deployed within the hospital's internal network, ensuring both high security and faster processing speeds.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Eir-8B, a large language model with 8 billion parameters, specifically designed to enhance the accuracy of handling medical tasks in the Thai language. This model focuses on providing clear and easy-to-understand answers for both healthcare professionals and patients, thereby improving the efficiency of diagnosis and treatment processes. Human evaluation was conducted to ensure that the model adheres to care standards and provides unbiased answers. To prioritize data security, the model is deployed within the hospital's internal network, ensuring both high security and faster processing speeds. The internal API connection is secured with encryption and strict authentication measures to prevent data leaks and unauthorized access. We evaluated several open-source large language models with 8 billion parameters on four medical benchmarks: MedQA, MedMCQA, PubMedQA, and the medical subset of MMLU. The best-performing baselines were used to develop Eir-8B. Our evaluation employed multiple questioning strategies, including zero-shot, few-shot, chain-of-thought reasoning, and ensemble/self-consistency voting methods. Our model outperformed commercially available Thai-language large language models by more than 10%. In addition, we developed enhanced model testing tailored for clinical use in Thai across 18 clinical tasks, where our model exceeded GPT-4o performance by more than 11%.
Related papers
- Detecting Bias and Enhancing Diagnostic Accuracy in Large Language Models for Healthcare [0.2302001830524133]
Biased AI-generated medical advice and misdiagnoses can jeopardize patient safety.
This study introduces new resources designed to promote ethical and precise AI in healthcare.
arXiv Detail & Related papers (2024-10-09T06:00:05Z) - Adapting LLMs for the Medical Domain in Portuguese: A Study on Fine-Tuning and Model Evaluation [1.922611370494431]
This study evaluates the performance of large language models (LLMs) as medical agents in Portuguese.
The InternLM2 model, with initial training on medical data, presented the best overall performance.
DrBode models, derived from ChatBode, exhibited a phenomenon of catastrophic forgetting of acquired medical knowledge.
arXiv Detail & Related papers (2024-09-30T19:10:03Z) - FEDMEKI: A Benchmark for Scaling Medical Foundation Models via Federated Knowledge Injection [83.54960238236548]
FEDMEKI not only preserves data privacy but also enhances the capability of medical foundation models.
FEDMEKI allows medical foundation models to learn from a broader spectrum of medical knowledge without direct data exposure.
arXiv Detail & Related papers (2024-08-17T15:18:56Z) - Small Language Models Learn Enhanced Reasoning Skills from Medical Textbooks [17.40940406100025]
We introduce Meerkat, a new family of medical AI systems ranging from 7 to 70 billion parameters.
Our systems achieved remarkable accuracy across six medical benchmarks.
Meerkat-70B correctly diagnosed 21 out of 38 complex clinical cases, outperforming humans' 13.8.
arXiv Detail & Related papers (2024-03-30T14:09:00Z) - Towards Building Multilingual Language Model for Medicine [54.1382395897071]
We construct a multilingual medical corpus, containing approximately 25.5B tokens encompassing 6 main languages.
We propose a multilingual medical multi-choice question-answering benchmark with rationale, termed as MMedBench.
Our final model, MMed-Llama 3, with only 8B parameters, achieves superior performance compared to all other open-source models on both MMedBench and English benchmarks.
arXiv Detail & Related papers (2024-02-21T17:47:20Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Almanac: Retrieval-Augmented Language Models for Clinical Medicine [1.5505279143287174]
We develop Almanac, a large language model framework augmented with retrieval capabilities for medical guideline and treatment recommendations.
Performance on a novel dataset of clinical scenarios evaluated by a panel of 5 board-certified and resident physicians demonstrates significant increases in factuality.
arXiv Detail & Related papers (2023-03-01T02:30:11Z) - Large Language Models Encode Clinical Knowledge [21.630872464930587]
Large language models (LLMs) have demonstrated impressive capabilities in natural language understanding and generation.
We propose a framework for human evaluation of model answers along multiple axes including factuality, precision, possible harm, and bias.
We show that comprehension, recall of knowledge, and medical reasoning improve with model scale and instruction prompt tuning.
arXiv Detail & Related papers (2022-12-26T14:28:24Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
Pre-trained language models (LMs) have shown great potential for cross-lingual transfer in low-resource settings.
We show the few-shot cross-lingual transfer property of LMs for named recognition (NER) and apply it to solve a low-resource and real-world challenge of code-mixed (Spanish-Catalan) clinical notes de-identification in the stroke.
arXiv Detail & Related papers (2022-04-10T21:46:52Z) - Advancing COVID-19 Diagnosis with Privacy-Preserving Collaboration in
Artificial Intelligence [79.038671794961]
We launch the Unified CT-COVID AI Diagnostic Initiative (UCADI), where the AI model can be distributedly trained and independently executed at each host institution.
Our study is based on 9,573 chest computed tomography scans (CTs) from 3,336 patients collected from 23 hospitals located in China and the UK.
arXiv Detail & Related papers (2021-11-18T00:43:41Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.