LLMs-in-the-Loop Part 2: Expert Small AI Models for Anonymization and De-identification of PHI Across Multiple Languages
- URL: http://arxiv.org/abs/2412.10918v1
- Date: Sat, 14 Dec 2024 18:10:29 GMT
- Title: LLMs-in-the-Loop Part 2: Expert Small AI Models for Anonymization and De-identification of PHI Across Multiple Languages
- Authors: Murat Gunay, Bunyamin Keles, Raife Hizlan,
- Abstract summary: This paper introduces expert small AI models developed using the LLM-in-the-loop methodology to meet the demand for domain-specific de-identification NER models.
Our de-identification NER models, developed in eight languages, achieved f1-micro score averages of 0.966, 0.975, 0.976, 0.970, 0.964, 0.974, 0.978, and 0.953 respectively.
- Score: 0.0
- License:
- Abstract: The rise of chronic diseases and pandemics like COVID-19 has emphasized the need for effective patient data processing while ensuring privacy through anonymization and de-identification of protected health information (PHI). Anonymized data facilitates research without compromising patient confidentiality. This paper introduces expert small AI models developed using the LLM-in-the-loop methodology to meet the demand for domain-specific de-identification NER models. These models overcome the privacy risks associated with large language models (LLMs) used via APIs by eliminating the need to transmit or store sensitive data. More importantly, they consistently outperform LLMs in de-identification tasks, offering superior performance and reliability. Our de-identification NER models, developed in eight languages (English, German, Italian, French, Romanian, Turkish, Spanish, and Arabic) achieved f1-micro score averages of 0.966, 0.975, 0.976, 0.970, 0.964, 0.974, 0.978, and 0.953 respectively. These results establish them as the most accurate healthcare anonymization solutions, surpassing existing small models and even general-purpose LLMs such as GPT-4o. While Part-1 of this series introduced the LLM-in-the-loop methodology for bio-medical document translation, this second paper showcases its success in developing cost-effective expert small NER models in de-identification tasks. Our findings lay the groundwork for future healthcare AI innovations, including biomedical entity and relation extraction, demonstrating the value of specialized models for domain-specific challenges.
Related papers
- Eir: Thai Medical Large Language Models [0.0]
Eir-8B is a large language model with 8 billion parameters designed to enhance the accuracy of handling medical tasks in the Thai language.
Human evaluation was conducted to ensure that the model adheres to care standards and provides unbiased answers.
The model is deployed within the hospital's internal network, ensuring both high security and faster processing speeds.
arXiv Detail & Related papers (2024-09-13T04:06:00Z) - LLMs-in-the-loop Part-1: Expert Small AI Models for Bio-Medical Text Translation [0.0]
This study introduces a novel "LLMs-in-the-loop" approach to develop supervised neural machine translation models optimized for medical texts.
Custom parallel corpora in six languages were compiled from scientific articles, synthetically generated clinical documents, and medical texts.
Our MarianMT-based models outperform Google Translate, DeepL, and GPT-4-Turbo.
arXiv Detail & Related papers (2024-07-16T19:32:23Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Empowering Healthcare through Privacy-Preserving MRI Analysis [3.6394715554048234]
We introduce the Ensemble-Based Federated Learning (EBFL) Framework.
EBFL framework deviates from the conventional approach by emphasizing model features over sharing sensitive patient data.
We have achieved remarkable precision in the classification of brain tumors, including glioma, meningioma, pituitary, and non-tumor instances.
arXiv Detail & Related papers (2024-03-14T19:51:18Z) - Large Language Model Distilling Medication Recommendation Model [58.94186280631342]
We harness the powerful semantic comprehension and input-agnostic characteristics of Large Language Models (LLMs)
Our research aims to transform existing medication recommendation methodologies using LLMs.
To mitigate this, we have developed a feature-level knowledge distillation technique, which transfers the LLM's proficiency to a more compact model.
arXiv Detail & Related papers (2024-02-05T08:25:22Z) - Supervised Knowledge Makes Large Language Models Better In-context Learners [94.89301696512776]
Large Language Models (LLMs) exhibit emerging in-context learning abilities through prompt engineering.
The challenge of improving the generalizability and factuality of LLMs in natural language understanding and question answering remains under-explored.
We propose a framework that enhances the reliability of LLMs as it: 1) generalizes out-of-distribution data, 2) elucidates how LLMs benefit from discriminative models, and 3) minimizes hallucinations in generative tasks.
arXiv Detail & Related papers (2023-12-26T07:24:46Z) - Improving Small Language Models on PubMedQA via Generative Data
Augmentation [4.96649519549027]
Large Language Models (LLMs) have made remarkable advancements in the field of natural language processing.
Small Language Models (SLMs) are known for their efficiency, but they often struggle with limited capacity and training data.
We introduce a novel method aimed at improving SLMs in the medical domain using LLM-based generative data augmentation.
arXiv Detail & Related papers (2023-05-12T23:49:23Z) - Large Language Models for Healthcare Data Augmentation: An Example on
Patient-Trial Matching [49.78442796596806]
We propose an innovative privacy-aware data augmentation approach for patient-trial matching (LLM-PTM)
Our experiments demonstrate a 7.32% average improvement in performance using the proposed LLM-PTM method, and the generalizability to new data is improved by 12.12%.
arXiv Detail & Related papers (2023-03-24T03:14:00Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
Pre-trained language models (LMs) have shown great potential for cross-lingual transfer in low-resource settings.
We show the few-shot cross-lingual transfer property of LMs for named recognition (NER) and apply it to solve a low-resource and real-world challenge of code-mixed (Spanish-Catalan) clinical notes de-identification in the stroke.
arXiv Detail & Related papers (2022-04-10T21:46:52Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.