Study of entanglement and phase transitions in the coupled top systems with standard and nonstandard symmetries
- URL: http://arxiv.org/abs/2409.08567v2
- Date: Tue, 08 Jul 2025 18:02:18 GMT
- Title: Study of entanglement and phase transitions in the coupled top systems with standard and nonstandard symmetries
- Authors: Rashmi Jangid Sharma, Jayendra N. Bandyopadhyay,
- Abstract summary: We study classical and quantum versions of a coupled top system in the absence and the presence of nonlinear torsion in the individual top.<n>The permutation and chiral symmetries are preserved in the Feingold-Peres (FP) model.<n>In this study, we investigate the role of underlying symmetries on the entanglement between the two tops.
- Score: 15.699822139827916
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study classical and quantum versions of a coupled top system in the absence and the presence of nonlinear torsion in the individual top. The model without the torsion and couples two identical tops is well-known in the literature as the Feingold-Peres (FP) model. The permutation and chiral symmetries are preserved in the FP model. This model is classified under the BDI or chiral orthogonal symmetry class, one of the recently proposed nonstandard symmetry classes. For the nonzero torsional cases, we study two different models:(i) identical torsional term in the individual top (NZT-I model); (ii) non-identical torsional term due to their opposite sign in the individual top (NZT-II model). The NZT-I model has the permutation symmetry but no chiral symmetry; hence, this model is classified under the standard three-fold symmetry classes. On the other hand, the NZT-II model does not have permutation symmetry but has chiral symmetry; hence, this model is also classified as a nonstandard BDI symmetry class. In this study, we investigate the role of underlying symmetries on the entanglement between the two tops. Moreover, we explore the interrelations among classical phase space dynamics, energy transitions, and the entanglement between the tops.
Related papers
- Symmetry-deformed toric codes and the quantum dimer model [0.24578723416255746]
We investigate symmetry-based deformations of topological order by systematically deconstructing the Gauss-law-enforcing star terms of the toric code (TC) Hamiltonian.<n>This "term-dropping" protocol introduces global symmetries that go beyond the alternative framework of "ungauging" topological order in symmetry-deformed models.
arXiv Detail & Related papers (2025-05-30T18:00:01Z) - Lattice models with subsystem/weak non-invertible symmetry-protected topological order [0.0]
We construct a family of lattice models which possess subsystem non-invertible symmetry-protected topological (SPT) order.<n>We also propose 2+1d lattice models which belong to two different weak SPT phases distinguished by a combination of translational symmetry and non-invertible symmetry.
arXiv Detail & Related papers (2025-05-16T16:32:35Z) - Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.
We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.
We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Topological nature of edge states for one-dimensional systems without symmetry protection [46.87902365052209]
We numerically verify and analytically prove a winding number invariant that correctly predicts the number of edge states in one-dimensional, nearest-neighbor (between unit cells)<n>Our winding number is invariant under unitary or similarity transforms.
arXiv Detail & Related papers (2024-12-13T19:44:54Z) - Exceptional Points and Stability in Nonlinear Models of Population Dynamics having $\mathcal{PT}$ symmetry [49.1574468325115]
We analyze models governed by the replicator equation of evolutionary game theory and related Lotka-Volterra systems of population dynamics.<n>We study the emergence of exceptional points in two cases: (a) when the governing symmetry properties are tied to global properties of the models, and (b) when these symmetries emerge locally around stationary states.
arXiv Detail & Related papers (2024-11-19T02:15:59Z) - Quantum-classical correspondence of non-Hermitian spin-orbit coupled bosonic junction [4.934387267206206]
We show that near the symmetry-breaking phase transition point, the correspondence between classical (mean-field) and quantum dynamics is more likely to break down.
In both the mean-field and many-particle models, the SOC effects can greatly promote the synchronous periodic oscillations between the spin-up and spin-down components.
arXiv Detail & Related papers (2024-10-17T02:58:17Z) - Bath Dynamical Decoupling with a Quantum Channel [44.99833362998488]
We find that bath dynamical decoupling works if and only if the kick is ergodic.
We study in which circumstances CPTP kicks on a mono-partite quantum system induce quantum Zeno dynamics with its Hamiltonian cancelled out.
arXiv Detail & Related papers (2024-09-27T07:47:52Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Dual opposing quadrature-PT symmetry [3.9911464307919124]
Recent research on type-I quadrature parity-time (PT) symmetry, utilizing an open twin-beam system.
Investigation into the correlation with the Einstein-Podolsky-Rosen criteria uncovers previously unexplored connections between PT symmetry and nonclassicality.
arXiv Detail & Related papers (2024-05-24T14:57:31Z) - Non-invertible and higher-form symmetries in 2+1d lattice gauge theories [0.0]
We explore exact generalized symmetries in the standard 2+1d lattice $mathbbZ$ gauge theory coupled to the Ising model.
One model has a (non-anomalous) non-invertible symmetry, and we identify two distinct non-invertible symmetry protected topological phases.
We discuss how the symmetries and anomalies in these two models are related by gauging, which is a 2+1d version of the Kennedy-Tasaki transformation.
arXiv Detail & Related papers (2024-05-21T18:00:00Z) - Multiple quantum exceptional, diabolical, and hybrid points in multimode bosonic systems: II. Nonconventional PT-symmetric dynamics and unidirectional coupling [0.0]
We analyze the existence and degeneracies of quantum exceptional, diabolical, and hybrid points of simple bosonic systems.
The system dynamics described by non-Hermitian Hamiltonians is governed by the Heisenberg-Langevin equations.
arXiv Detail & Related papers (2024-05-02T18:40:21Z) - A Nonlinear Journey from Structural Phase Transitions to Quantum
Annealing [0.0]
We map equilibrium properties of a 1-dimensional chain of quantum Ising spins in a transverse field (the transverse field Ising (TFI) model)
We argue that coupling between the fundamental topological solitary waves in the classical $phi4$ system is the analogue of the competing effect of the transverse field on spin flips in the quantum TFI model.
arXiv Detail & Related papers (2024-01-26T17:28:01Z) - Identifying the Group-Theoretic Structure of Machine-Learned Symmetries [41.56233403862961]
We propose methods for examining and identifying the group-theoretic structure of such machine-learned symmetries.
As an application to particle physics, we demonstrate the identification of the residual symmetries after the spontaneous breaking of non-Abelian gauge symmetries.
arXiv Detail & Related papers (2023-09-14T17:03:50Z) - Dispersive Non-reciprocity between a Qubit and a Cavity [24.911532779175175]
We present an experimental study of a non-reciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity.
We show that the qubit-cavity dynamics is well-described in a wide parameter regime by a simple non-reciprocal master-equation model.
arXiv Detail & Related papers (2023-07-07T17:19:18Z) - Regularizing Towards Soft Equivariance Under Mixed Symmetries [23.603875905608565]
We present a regularizer-based method for building a model for a dataset with mixed approximate symmetries.
We show that our method achieves better accuracy than prior approaches while discovering the approximate symmetry levels correctly.
arXiv Detail & Related papers (2023-06-01T05:33:41Z) - Non-Hermitian Floquet-Free Analytically Solvable Time Dependant Systems [0.0]
We introduce a class of time-dependent non-Hermitian Hamiltonians that can describe a two-level system with temporally modulated on-site potential and couplings.
Our proposed class of Hamiltonians can be employed in different platforms such as electronic circuits, acoustics, and photonics to design structures with hidden PT-symmetry.
arXiv Detail & Related papers (2023-02-02T04:57:13Z) - Duality viewpoint of criticality [10.697358928025304]
We study quantum many-body systems which are self-dual under duality transformation connecting different symmetry protected topological phases.
We provide a geometric explanation of the criticality of these self-dual models.
We illustrate our results with several examples in one and two dimensions, which separate two different SPTs.
arXiv Detail & Related papers (2022-09-27T15:13:27Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Approximately Equivariant Networks for Imperfectly Symmetric Dynamics [24.363954435050264]
We find that our models can outperform both baselines with no symmetry bias and baselines with overly strict symmetry in both simulated turbulence domains and real-world multi-stream jet flow.
arXiv Detail & Related papers (2022-01-28T07:31:28Z) - Harmonic oscillator kicked by spin measurements: a Floquet-like system
without classical analogous [62.997667081978825]
The impulsive driving is provided by stroboscopic measurements on an ancillary degree of freedom.
The dynamics of this system is determined in closed analytical form.
We observe regimes with crystalline and quasicrystalline structures in phase space, resonances, and evidences of chaotic behavior.
arXiv Detail & Related papers (2021-11-23T20:25:57Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Hidden symmetry and tunnelling dynamics in asymmetric quantum Rabi
models [0.0]
The asymmetric quantum Rabi model (AQRM) has a broken $mathbbZ$ symmetry, with generally a non-degenerate eigenvalue spectrum.
This unknown "symmetry" has thus been referred to as hidden symmetry in the literature.
We show that this hidden symmetry is not limited to the AQRM, but exists in various related light-matter interaction models with an asymmetric qubit bias term.
arXiv Detail & Related papers (2020-07-13T11:06:52Z) - Optimal non-classical correlations of light with a levitated nano-sphere [34.82692226532414]
Nonclassical correlations provide a resource for many applications in quantum technology.
Optomechanical systems can generate nonclassical correlations between the mechanical mode and a mode of travelling light.
We propose automated optimization of the production of quantum correlations in such a system.
arXiv Detail & Related papers (2020-06-26T15:27:47Z) - Generalized string-nets for unitary fusion categories without
tetrahedral symmetry [77.34726150561087]
We present a general construction of the Levin-Wen model for arbitrary multiplicity-free unitary fusion categories.
We explicitly calculate the matrix elements of the Hamiltonian and, furthermore, show that it has the same properties as the original one.
arXiv Detail & Related papers (2020-04-15T12:21:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.