論文の概要: LA-RAG:Enhancing LLM-based ASR Accuracy with Retrieval-Augmented Generation
- arxiv url: http://arxiv.org/abs/2409.08597v1
- Date: Fri, 13 Sep 2024 07:28:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 17:28:47.620651
- Title: LA-RAG:Enhancing LLM-based ASR Accuracy with Retrieval-Augmented Generation
- Title(参考訳): LA-RAG:Retrieval-Augmented GenerationによるLLMベースのASR精度向上
- Authors: Shaojun Li, Hengchao Shang, Daimeng Wei, Jiaxin Guo, Zongyao Li, Xianghui He, Min Zhang, Hao Yang,
- Abstract要約: 近年,大規模言語モデル(LLM)への音声情報統合の進歩により,音声認識(ASR)の精度が大幅に向上した。
既存の手法はアクセントのような様々な音響条件下での音声エンコーダの能力に制約されることが多い。
LA-RAGは、LLMベースのASRのための新しいRAGパラダイムである。
- 参考スコア(独自算出の注目度): 15.520180125182756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in integrating speech information into large language models (LLMs) have significantly improved automatic speech recognition (ASR) accuracy. However, existing methods often constrained by the capabilities of the speech encoders under varied acoustic conditions, such as accents. To address this, we propose LA-RAG, a novel Retrieval-Augmented Generation (RAG) paradigm for LLM-based ASR. LA-RAG leverages fine-grained token-level speech datastores and a speech-to-speech retrieval mechanism to enhance ASR accuracy via LLM in-context learning (ICL) capabilities. Experiments on Mandarin and various Chinese dialect datasets demonstrate significant improvements in ASR accuracy compared to existing methods, validating the effectiveness of our approach, especially in handling accent variations.
- Abstract(参考訳): 近年,大規模言語モデル(LLM)への音声情報統合の進歩により,音声認識(ASR)の精度が大幅に向上した。
しかし、既存の手法はアクセントのような様々な音響条件下での音声エンコーダの能力に制約されることが多い。
そこで我々は,LLMベースのASRのための新しいRAGパラダイムであるLA-RAGを提案する。
LA-RAGは、粒度の細かいトークンレベルの音声データストアと音声音声検索機構を活用し、LLMインコンテキスト学習(ICL)機能を介してASRの精度を向上させる。
マンダリンおよび各種中国語方言データセットの実験は、既存の手法と比較して、ASRの精度が大幅に向上し、特にアクセント変動の処理において、我々のアプローチの有効性が検証された。
関連論文リスト
- Bridging Speech and Text: Enhancing ASR with Pinyin-to-Character Pre-training in LLMs [20.97172337899685]
そこで本研究では,Pinyinの埋め込みシーケンス上で,対応する漢字を生成するための大規模言語モデル(LLM)の事前学習を提案する。
このステップにより、LLMは実際の音声データに遭遇する前に発音特徴からテキストを生成することができる。
AISHELL-1コーパスでは,ベースラインに比べてASRタスクが9.5%改善した。
論文 参考訳(メタデータ) (2024-09-24T12:06:31Z) - Large Language Models Are Strong Audio-Visual Speech Recognition Learners [53.142635674428874]
マルチモーダル・大規模言語モデル(MLLM)は,近年,多モーダル理解能力の強化により,研究の焦点となっている。
本稿では,Llama-AVSRを提案する。
我々は,最大公的なAVSRベンチマークであるLSS3に対する提案手法の評価を行い,WERが0.81%,0.77%であるASRとAVSRのタスクに対して,新しい最先端の結果を得た。
論文 参考訳(メタデータ) (2024-09-18T21:17:27Z) - Towards interfacing large language models with ASR systems using confidence measures and prompting [54.39667883394458]
本研究では,大言語モデル(LLM)を用いたASRテキストのポストホック修正について検討する。
精度の高い転写文に誤りを導入することを避けるため,信頼度に基づくフィルタリング手法を提案する。
その結果,競争力の低いASRシステムの性能が向上することが示唆された。
論文 参考訳(メタデータ) (2024-07-31T08:00:41Z) - It's Never Too Late: Fusing Acoustic Information into Large Language
Models for Automatic Speech Recognition [70.77292069313154]
大規模言語モデル(LLM)は、自動音声認識(ASR)出力の上の生成誤り訂正(GER)に成功することができる。
本研究では,不確実性認識ダイナミックフュージョン (UADF) と呼ばれる新しい遅延融合解によって予測された転写を生成する前に,音響情報を注入することにより,そのような制限を克服することを目的とする。
論文 参考訳(メタデータ) (2024-02-08T07:21:45Z) - Large Language Models are Efficient Learners of Noise-Robust Speech
Recognition [65.95847272465124]
大規模言語モデル(LLM)の最近の進歩は、自動音声認識(ASR)のための生成誤り訂正(GER)を促進している。
本研究では,このベンチマークをノイズの多い条件に拡張し,GERのデノナイジングをLLMに教えることができるかを検討する。
最新のLLM実験では,単語誤り率を最大53.9%改善し,新たなブレークスルーを実現している。
論文 参考訳(メタデータ) (2024-01-19T01:29:27Z) - Towards ASR Robust Spoken Language Understanding Through In-Context
Learning With Word Confusion Networks [68.79880423713597]
本稿では,トップ仮説のみに頼るのではなく,ASRシステムの格子出力を利用する手法を提案する。
音声質問応答と意図分類を網羅した文脈内学習実験により,LLMの音声書き起こしに対する弾力性について明らかにした。
論文 参考訳(メタデータ) (2024-01-05T17:58:10Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
本稿では,意味的格子処理によるASRシステム内における文脈認識の高度化のための新しい手法を提案する。
提案手法は,隠れマルコフモデルとガウス混合モデル(HMM-GMM)とディープニューラルネットワーク(DNN)モデルを用いて,精度を向上する。
本稿では,実験分析によるLibriSpeechデータセット上でのフレームワークの有効性を示す。
論文 参考訳(メタデータ) (2023-10-14T23:16:05Z) - Exploring the Integration of Large Language Models into Automatic Speech
Recognition Systems: An Empirical Study [0.0]
本稿では,Large Language Models (LLM) と自動音声認識(ASR)システムの統合について検討する。
我々の主な焦点は、LLMのコンテキスト内学習機能を用いて、ASRシステムの性能を向上させる可能性を調査することである。
論文 参考訳(メタデータ) (2023-07-13T02:31:55Z) - ASR data augmentation in low-resource settings using cross-lingual
multi-speaker TTS and cross-lingual voice conversion [49.617722668505834]
提案手法は,モデル学習中に1つの話者のみを用いて音声合成と音声変換を行い,ASRシステムの改善を可能にする。
対象言語における1つの実話者のみを用いてデータ拡張法を用いて、有望なASRトレーニング結果を得ることが可能である。
論文 参考訳(メタデータ) (2022-03-29T11:55:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。