AdR-Gaussian: Accelerating Gaussian Splatting with Adaptive Radius
- URL: http://arxiv.org/abs/2409.08669v1
- Date: Fri, 13 Sep 2024 09:32:38 GMT
- Title: AdR-Gaussian: Accelerating Gaussian Splatting with Adaptive Radius
- Authors: Xinzhe Wang, Ran Yi, Lizhuang Ma,
- Abstract summary: 3D Gaussian Splatting (3DGS) is a recent explicit 3D representation that has achieved high-quality reconstruction and real-time rendering of complex scenes.
We propose AdR-Gaussian, which moves part of serial culling in Render stage into the earlier Preprocess stage to enable parallel culling.
Our contributions are threefold, achieving a rendering speed of 310% while maintaining equivalent or even better quality than the state-of-the-art.
- Score: 38.774337140911044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Gaussian Splatting (3DGS) is a recent explicit 3D representation that has achieved high-quality reconstruction and real-time rendering of complex scenes. However, the rasterization pipeline still suffers from unnecessary overhead resulting from avoidable serial Gaussian culling, and uneven load due to the distinct number of Gaussian to be rendered across pixels, which hinders wider promotion and application of 3DGS. In order to accelerate Gaussian splatting, we propose AdR-Gaussian, which moves part of serial culling in Render stage into the earlier Preprocess stage to enable parallel culling, employing adaptive radius to narrow the rendering pixel range for each Gaussian, and introduces a load balancing method to minimize thread waiting time during the pixel-parallel rendering. Our contributions are threefold, achieving a rendering speed of 310% while maintaining equivalent or even better quality than the state-of-the-art. Firstly, we propose to early cull Gaussian-Tile pairs of low splatting opacity based on an adaptive radius in the Gaussian-parallel Preprocess stage, which reduces the number of affected tile through the Gaussian bounding circle, thus reducing unnecessary overhead and achieving faster rendering speed. Secondly, we further propose early culling based on axis-aligned bounding box for Gaussian splatting, which achieves a more significant reduction in ineffective expenses by accurately calculating the Gaussian size in the 2D directions. Thirdly, we propose a balancing algorithm for pixel thread load, which compresses the information of heavy-load pixels to reduce thread waiting time, and enhance information of light-load pixels to hedge against rendering quality loss. Experiments on three datasets demonstrate that our algorithm can significantly improve the Gaussian Splatting rendering speed.
Related papers
- CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes [53.107474952492396]
CityGaussianV2 is a novel approach for large-scale scene reconstruction.
We implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence.
Our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs.
arXiv Detail & Related papers (2024-11-01T17:59:31Z) - PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting [59.277480452459315]
We propose a principled spatial sensitivity pruning score that outperforms current approaches.
We also propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model.
Our pipeline increases the average rendering speed of 3D-GS by 2.65$times$ while retaining more salient foreground information.
arXiv Detail & Related papers (2024-06-14T17:53:55Z) - F-3DGS: Factorized Coordinates and Representations for 3D Gaussian Splatting [13.653629893660218]
We propose Factorized 3D Gaussian Splatting (F-3DGS) as an alternative to neural radiance field (NeRF) rendering methods.
F-3DGS achieves a significant reduction in storage costs while maintaining comparable quality in rendered images.
arXiv Detail & Related papers (2024-05-27T11:55:49Z) - RTG-SLAM: Real-time 3D Reconstruction at Scale using Gaussian Splatting [51.51310922527121]
We present a real-time 3D reconstruction system with an RGBD camera for large-scale environments using Gaussian splatting.
We force each Gaussian to be either opaque or nearly transparent, with the opaque ones fitting the surface and dominant colors, and transparent ones fitting residual colors.
We show real-time reconstructions of a variety of large scenes and show superior performance in the realism of novel view synthesis and camera tracking accuracy.
arXiv Detail & Related papers (2024-04-30T16:54:59Z) - Identifying Unnecessary 3D Gaussians using Clustering for Fast Rendering of 3D Gaussian Splatting [2.878831747437321]
3D-GS is a new rendering approach that outperforms the neural radiance field (NeRF) in terms of both speed and image quality.
We propose a computational reduction technique that quickly identifies unnecessary 3D Gaussians in real-time for rendering the current view.
For the Mip-NeRF360 dataset, the proposed technique excludes 63% of 3D Gaussians on average before the 2D image projection, which reduces the overall rendering by almost 38.3% without sacrificing peak-signal-to-noise-ratio (PSNR)
The proposed accelerator also achieves a speedup of 10.7x compared to a GPU
arXiv Detail & Related papers (2024-02-21T14:16:49Z) - GES: Generalized Exponential Splatting for Efficient Radiance Field Rendering [112.16239342037714]
GES (Generalized Exponential Splatting) is a novel representation that employs Generalized Exponential Function (GEF) to model 3D scenes.
With the aid of a frequency-modulated loss, GES achieves competitive performance in novel-view synthesis benchmarks.
arXiv Detail & Related papers (2024-02-15T17:32:50Z) - LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS [55.85673901231235]
We introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format.
Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction.
LightGaussian achieves an average 15x compression rate while boosting FPS from 144 to 237 within the 3D-GS framework.
arXiv Detail & Related papers (2023-11-28T21:39:20Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
We propose a learnable mask strategy to reduce the number of 3D Gaussian points without sacrificing performance.
We also propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2023-11-22T20:31:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.