論文の概要: Precision Aquaculture: An Integrated Computer Vision and IoT Approach for Optimized Tilapia Feeding
- arxiv url: http://arxiv.org/abs/2409.08695v3
- Date: Wed, 25 Sep 2024 03:34:45 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-07 21:09:04.604848
- Title: Precision Aquaculture: An Integrated Computer Vision and IoT Approach for Optimized Tilapia Feeding
- Title(参考訳): 精密養殖:最適化ティラピア給餌のための統合型コンピュータビジョンとIoTアプローチ
- Authors: Rania Hossam, Ahmed Heakl, Walid Gomaa,
- Abstract要約: 伝統的な魚の養殖は効率の悪さを招き、環境問題や生産性を低下させる。
我々はコンピュータビジョンとIoT技術を組み合わせて、ティラピアの正確な給餌を行う革新的なシステムを開発した。
予備推計では、従来の農場に比べて58倍の増産が期待されている。
- 参考スコア(独自算出の注目度): 1.9198713957364215
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional fish farming practices often lead to inefficient feeding, resulting in environmental issues and reduced productivity. We developed an innovative system combining computer vision and IoT technologies for precise Tilapia feeding. Our solution uses real-time IoT sensors to monitor water quality parameters and computer vision algorithms to analyze fish size and count, determining optimal feed amounts. A mobile app enables remote monitoring and control. We utilized YOLOv8 for keypoint detection to measure Tilapia weight from length, achieving \textbf{94\%} precision on 3,500 annotated images. Pixel-based measurements were converted to centimeters using depth estimation for accurate feeding calculations. Our method, with data collection mirroring inference conditions, significantly improved results. Preliminary estimates suggest this approach could increase production up to 58 times compared to traditional farms. Our models, code, and dataset are open-source~\footnote{The code, dataset, and models are available upon reasonable request.
- Abstract(参考訳): 伝統的な魚の養殖は、しばしば非効率な給餌につながり、環境問題と生産性の低下をもたらす。
我々はコンピュータビジョンとIoT技術を組み合わせて、ティラピアの正確な給餌を行う革新的なシステムを開発した。
我々のソリューションは、リアルタイムIoTセンサを使用して水質パラメータとコンピュータビジョンアルゴリズムを監視し、魚の大きさと数を分析し、最適な餌量を決定する。
モバイルアプリはリモート監視とコントロールを可能にする。
YOLOv8をキーポイント検出に利用し,3500枚の注釈付き画像に対して,テラピア重量を長さから測定し,精度を<textbf{94\%}とした。
精密給餌計算のための深度推定法を用いて, 画素による測定をセンチメートルに変換した。
提案手法は,データ収集ミラーリング推定条件を用いて,結果を大幅に改善した。
予備推計では、従来の農場に比べて58倍の増産が期待されている。
私たちのモデル、コード、データセットはオープンソースです。
関連論文リスト
- Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
本稿は、大量のリモートセンシングデータの処理において、量子コンピューティング技術を活用することへの大きなシフトを取り上げる。
提案したQuanv4EOモデルでは,多次元EOデータを前処理するための準進化法が導入された。
主要な知見は,提案モデルが画像分類の精度を維持するだけでなく,EOのユースケースの約5%の精度向上を図っていることを示唆している。
論文 参考訳(メタデータ) (2024-07-24T09:11:34Z) - FishMOT: A Simple and Effective Method for Fish Tracking Based on IoU
Matching [11.39414015803651]
FishMOTは、オブジェクト検出とObjectoUマッチングを組み合わせた、新しい魚追跡手法である。
本手法は, 各種環境および魚の数に対して, 優れた堅牢性と汎用性を示す。
論文 参考訳(メタデータ) (2023-09-06T13:16:41Z) - Prawn Morphometrics and Weight Estimation from Images using Deep
Learning for Landmark Localization [2.778518997767646]
我々は,黒トラエビ(Penaeus monodon)をモデル甲殻類として,体重推定と形態計測を自動化するための新しい手法を開発した。
形態計測解析では,検出されたランドマークを用いて5つの重要なエビ形質を抽出した。
実験の結果,新しいDL手法は,精度,堅牢性,効率の点で,既存のDL手法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2023-07-15T07:05:06Z) - TempNet: Temporal Attention Towards the Detection of Animal Behaviour in
Videos [63.85815474157357]
本稿では,映像中の生物学的行動を検出するための,効率的なコンピュータビジョンと深層学習に基づく手法を提案する。
TempNetはエンコーダブリッジと残留ブロックを使用して、2段階の空間的、そして時間的、エンコーダでモデル性能を維持する。
本研究では,サブルフィッシュ (Anoplopoma fimbria) 幼虫の検出への応用を実証する。
論文 参考訳(メタデータ) (2022-11-17T23:55:12Z) - Automatic Controlling Fish Feeding Machine using Feature Extraction of
Nutriment and Ripple Behavior [0.0]
栄養素数とリップル行動の推定を組み合わせたコンピュータビジョンに基づく自動魚介類供給機を提案する。
栄養素の数とリップル行動に基づいて, 実環境において常に良好に機能する魚の給餌機械を制御できる。
論文 参考訳(メタデータ) (2022-08-15T05:52:37Z) - DeepTimeAnomalyViz: A Tool for Visualizing and Post-processing Deep
Learning Anomaly Detection Results for Industrial Time-Series [88.12892448747291]
DeTAVIZ インタフェースは Web ブラウザをベースとした可視化ツールで,特定の問題における DL ベースの異常検出の実現可能性の迅速な探索と評価を行う。
DeTAVIZを使えば、ユーザーは複数のポスト処理オプションを簡単かつ迅速に繰り返し、異なるモデルを比較することができ、選択したメトリックに対して手動で最適化できる。
論文 参考訳(メタデータ) (2021-09-21T10:38:26Z) - Scale-aware direct monocular odometry [4.111899441919165]
本稿では,深部ニューラルネットワークからの深度予測に基づく直接単分子オードメトリーの枠組みを提案する。
提案手法は,従来の単分子SLAMよりも5倍から9倍精度が高く,ステレオシステムに近い精度である。
論文 参考訳(メタデータ) (2021-09-21T10:30:15Z) - Tuna Nutriment Tracking using Trajectory Mapping in Application to
Aquaculture Fish Tank [0.0]
タンク内の魚の状態を推定し、栄養素の量を調整することは、魚の給餌システムのコスト管理に重要な役割を担っている。
本手法は,養殖魚養殖場から採取したビデオの栄養状態の追跡に基づく。
論文 参考訳(メタデータ) (2021-03-10T06:02:19Z) - Enhancing sensor resolution improves CNN accuracy given the same number
of parameters or FLOPS [53.10151901863263]
パラメータ数やFLOPSが同じで、高い入力解像度で高い精度が得られるように、ネットワークを変更することは、ほぼ常に可能であることを示す。
MNIST、Fashion MNIST、CIFAR10データセットに関する予備的研究は、提案手法の効率性を実証している。
論文 参考訳(メタデータ) (2021-03-09T06:47:01Z) - Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 using
Machine Learning Methods Trained with Radiative Transfer Simulations [58.17039841385472]
我々は,機械モデリングと衛星データ利用の並列化を活用し,作物生産性の高度モニタリングを行う。
本モデルでは, 地域情報を使用しなくても, 各種C3作物の種類, 環境条件の総合的生産性を推定することに成功した。
これは、現在の地球観測クラウドコンピューティングプラットフォームの助けを借りて、新しい衛星センサーから作物の生産性をグローバルにマップする可能性を強調しています。
論文 参考訳(メタデータ) (2020-12-07T16:23:13Z) - Learning Monocular Dense Depth from Events [53.078665310545745]
イベントカメラは、強度フレームではなく、非同期イベントのストリームの形式で輝度を変化させる。
最近の学習に基づくアプローチは、単眼深度予測のようなイベントベースのデータに適用されている。
本稿では,この課題を解決するための繰り返しアーキテクチャを提案し,標準フィードフォワード法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-10-16T12:36:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。