論文の概要: Energy Consumption Trends in Sound Event Detection Systems
- arxiv url: http://arxiv.org/abs/2409.08763v1
- Date: Fri, 13 Sep 2024 12:11:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:49:03.763639
- Title: Energy Consumption Trends in Sound Event Detection Systems
- Title(参考訳): 音響イベント検出システムにおけるエネルギー消費動向
- Authors: Constance Douwes, Romain Serizel,
- Abstract要約: パフォーマンスを損なうことなく、トレーニング中によりエネルギー効率の良いアプローチに移行することを強調します。
我々は、SEDコミュニティ内でより環境に優しい実践を促進することを望んでいます。
- 参考スコア(独自算出の注目度): 9.658615045493734
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning systems have become increasingly energy- and computation-intensive, raising concerns about their environmental impact. As organizers of the Detection and Classification of Acoustic Scenes and Events (DCASE) challenge, we recognize the importance of addressing this issue. For the past three years, we have integrated energy consumption metrics into the evaluation of sound event detection (SED) systems. In this paper, we analyze the impact of this energy criterion on the challenge results and explore the evolution of system complexity and energy consumption over the years. We highlight a shift towards more energy-efficient approaches during training without compromising performance, while the number of operations and system complexity continue to grow. Through this analysis, we hope to promote more environmentally friendly practices within the SED community.
- Abstract(参考訳): ディープラーニングシステムは、ますますエネルギーと計算集約化が進み、環境への影響に対する懸念が高まっている。
音響シーン・イベントの検出・分類(DCASE)課題のオーガナイザとして,この問題に対処することの重要性を認識した。
過去3年間,我々は,音事象検出(SED)システムの評価にエネルギー消費指標を統合してきた。
本稿では,このエネルギー基準が課題結果に与える影響を分析し,長年にわたるシステム複雑性とエネルギー消費の進化について考察する。
パフォーマンスを損なうことなく、トレーニング中によりエネルギー効率の良いアプローチに移行する一方で、運用数やシステムの複雑さは増加し続けています。
この分析を通じて,SEDコミュニティ内でのより環境に優しい実践の促進を期待する。
関連論文リスト
- The Energy Loss Phenomenon in RLHF: A New Perspective on Mitigating Reward Hacking [72.45765726160151]
この研究は、人間からのフィードバックからの強化学習におけるエネルギー損失現象と、そのハッキング報酬への関連を識別する。
報酬計算において最終層におけるエネルギー損失の増加をペナルティ化し,過大なエネルギー損失を防止するEnergy Los-Aware PPOアルゴリズム(EPPO)を提案する。
論文 参考訳(メタデータ) (2025-01-31T18:10:53Z) - From Efficiency Gains to Rebound Effects: The Problem of Jevons' Paradox in AI's Polarized Environmental Debate [69.05573887799203]
この議論の多くは、大きな間接効果に対処することなく直接的影響に集中している。
本稿では,Jevonsのパラドックス問題がどのようにAIに適用され,効率向上がパラドックス的に消費増加を促すかを検討する。
これらの2次の影響を理解するには、ライフサイクルアセスメントと社会経済分析を組み合わせた学際的アプローチが必要であると論じる。
論文 参考訳(メタデータ) (2025-01-27T22:45:06Z) - Addressing the sustainable AI trilemma: a case study on LLM agents and RAG [7.6212949300713015]
大規模言語モデル(LLM)は重要な機能を示しているが、その広範なデプロイメントとより高度なアプリケーションによって、重要な持続可能性の課題が提起されている。
本稿では、持続可能なAIトリレムマの概念を提案し、AI能力、デジタルエクイティ、環境サステナビリティの緊張関係を強調する。
論文 参考訳(メタデータ) (2025-01-14T17:21:16Z) - Double-Exponential Increases in Inference Energy: The Cost of the Race for Accuracy [3.6731536660959985]
コンピュータビジョンにおけるディープラーニングモデルは、エネルギー消費と持続可能性に対する懸念を増大させる。
1200画像ネット分類モデルの推定エネルギー消費の包括的分析を行う。
我々は、エネルギー消費に寄与する重要な要因を特定し、エネルギー効率を向上させる方法を示す。
論文 参考訳(メタデータ) (2024-12-12T21:44:08Z) - How green is continual learning, really? Analyzing the energy consumption in continual training of vision foundation models [10.192658261639549]
本研究では,連続学習アルゴリズムのエネルギー効率を体系的に理解することを目的とする。
CIFAR-100, ImageNet-R, DomainNetの3つの標準データセットで実験を行った。
本稿では,エネルギー・正確性トレードオフの観点からアルゴリズムの効率を計測する新しい指標であるEnergy NetScoreを提案する。
論文 参考訳(メタデータ) (2024-09-27T11:50:10Z) - From Computation to Consumption: Exploring the Compute-Energy Link for Training and Testing Neural Networks for SED Systems [9.658615045493734]
本稿では,音事象検出システムの主要なコンポーネントであるニューラルネットワークアーキテクチャについて検討する。
我々は,小規模から大規模アーキテクチャの訓練および試験におけるエネルギー消費量を測定した。
我々は,エネルギー消費,浮動小数点演算数,パラメータ数,GPU/メモリ利用率の複雑な関係を確立する。
論文 参考訳(メタデータ) (2024-09-08T12:51:34Z) - A Review on AI Algorithms for Energy Management in E-Mobility Services [4.084938013041068]
エモービリティ(E-mobility、電気モビリティ)は、環境や持続可能性の懸念に対処するための重要なソリューションとして登場した。
本稿では,e-mobilityシステムにおける効率的なエネルギー管理に関する様々な課題に,人工知能(AI)が取り組む可能性を探究する。
論文 参考訳(メタデータ) (2023-09-26T16:34:35Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
本研究は,環境の持続可能性を考慮した高性能機械学習モデルの要求に応えることを目的としている。
Decision TreesやRandom Forestsといった従来の機械学習アルゴリズムは、堅牢な効率性とパフォーマンスを示している。
しかし, 資源消費の累積増加にもかかわらず, 最適化された構成で優れた結果が得られた。
論文 参考訳(メタデータ) (2023-07-01T15:18:00Z) - Energy Drain of the Object Detection Processing Pipeline for Mobile
Devices: Analysis and Implications [77.00418462388525]
本稿では、移動体拡張現実(AR)クライアントのエネルギー消費と、畳み込みニューラルネットワーク(CNN)に基づく物体検出を行う際の検出遅延について、初めて詳細な実験を行った。
我々は,移動体ARクライアントのエネルギー分析を精査し,CNNによる物体検出を行う際のエネルギー消費に関するいくつかの興味深い視点を明らかにした。
論文 参考訳(メタデータ) (2020-11-26T00:32:07Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Towards the Systematic Reporting of the Energy and Carbon Footprints of
Machine Learning [68.37641996188133]
我々は、リアルタイムエネルギー消費と二酸化炭素排出量を追跡するための枠組みを導入する。
エネルギー効率のよい強化学習アルゴリズムのためのリーダーボードを作成します。
炭素排出量削減とエネルギー消費削減のための戦略を提案する。
論文 参考訳(メタデータ) (2020-01-31T05:12:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。