論文の概要: Cross-Country Comparative Analysis of Climate Resilience and Localized Mapping in Data-Sparse Regions
- arxiv url: http://arxiv.org/abs/2409.08765v1
- Date: Fri, 13 Sep 2024 12:12:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:49:03.761264
- Title: Cross-Country Comparative Analysis of Climate Resilience and Localized Mapping in Data-Sparse Regions
- Title(参考訳): データ分散領域における気候抵抗性と局部マッピングのクロスカウンタリー比較分析
- Authors: Ronald Katende,
- Abstract要約: 農業は低所得国(一般)で最も気候変動に弱い
本稿では,セクター気候の弾力性に関するクロスカントリー比較分析の枠組みを紹介する。
この研究は、lic間の共有脆弱性と適応戦略を特定し、より効果的なポリシー設計を可能にした。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Climate resilience across sectors varies significantly in low-income countries (LICs), with agriculture being the most vulnerable to climate change. Existing studies typically focus on individual countries, offering limited insights into broader cross-country patterns of adaptation and vulnerability. This paper addresses these gaps by introducing a framework for cross-country comparative analysis of sectoral climate resilience using meta-analysis and cross-country panel data techniques. The study identifies shared vulnerabilities and adaptation strategies across LICs, enabling more effective policy design. Additionally, a novel localized climate-agriculture mapping technique is developed, integrating sparse agricultural data with high-resolution satellite imagery to generate fine-grained maps of agricultural productivity under climate stress. Spatial interpolation methods, such as kriging, are used to address data gaps, providing detailed insights into regional agricultural productivity and resilience. The findings offer policymakers tools to prioritize climate adaptation efforts and optimize resource allocation both regionally and nationally.
- Abstract(参考訳): 気候の回復力は低所得国(一般)で大きく異なり、農業は気候変動に対して最も脆弱である。
既存の研究は、一般的に個々の国に焦点を当て、適応と脆弱性のより広い国間のパターンに関する限られた洞察を提供する。
本稿では、メタ分析とクロスカントリーパネルデータ技術を用いて、セクター気候の弾力性に関するクロスカントリー比較分析の枠組みを導入することにより、これらのギャップに対処する。
この研究は、lic間の共有脆弱性と適応戦略を特定し、より効果的なポリシー設計を可能にした。
さらに, 環境負荷下での農業生産性の微粒化マップを作成するために, 高解像度の衛星画像と疎農業データを融合して, 新たな局部的な温暖化マッピング技術を開発した。
クリギングのような空間補間法は、データギャップに対処するために使われ、地域の農業生産性とレジリエンスに関する詳細な洞察を提供する。
この発見は、気候適応の取り組みを優先順位付けし、地域と国家の両方で資源配分を最適化する政策立案者ツールを提供する。
関連論文リスト
- Anticipatory Understanding of Resilient Agriculture to Climate [66.008020515555]
本稿では,リモートセンシング,深層学習,作物収量モデリング,食品流通システムの因果モデリングを組み合わせることで,食品のセキュリティホットスポットをよりよく識別する枠組みを提案する。
我々は、世界の人口の大部分を供給している北インドの小麦パンバスケットの分析に焦点をあてる。
論文 参考訳(メタデータ) (2024-11-07T22:29:05Z) - Combining Observational Data and Language for Species Range Estimation [63.65684199946094]
我々は,数百万の市民科学種の観察とウィキペディアのテキスト記述を組み合わせた新しいアプローチを提案する。
我々のフレームワークは、場所、種、テキスト記述を共通空間にマッピングし、テキスト記述からゼロショット範囲の推定を可能にする。
また,本手法は観測データと組み合わせることで,少ないデータでより正確な距離推定を行うことができる。
論文 参考訳(メタデータ) (2024-10-14T17:22:55Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Identifying Climate Targets in National Laws and Policies using Machine Learning [0.0]
我々は,国家法や政策から気候目標の言及を抽出するアプローチを提案する。
ターゲットの3つのカテゴリ('ネットゼロ'、'リダクション'、'その他')を識別するエキスパートアノテートデータセットを作成します。
我々は、我々のモデルに関連するバイアスと株式の影響を調査し、問題のある特徴として特定の年と国名を特定する。
論文 参考訳(メタデータ) (2024-04-03T15:55:27Z) - Cross Domain Early Crop Mapping using CropSTGAN [12.271756709807898]
本稿では,Crop Mapping Spectral-temporal Generative Adrial Neural Network (CropSTGAN)を紹介する。
CropSTGANは、ターゲットドメインのスペクトル特徴をソースドメインのスペクトル特徴に変換することを学習し、実質的に大きな相似性をブリッジする。
実験では、CropSTGANは様々な最先端(SOTA)メソッドに対してベンチマークされる。
論文 参考訳(メタデータ) (2024-01-15T00:27:41Z) - Analyzing Regional Impacts of Climate Change using Natural Language
Processing Techniques [0.9387233631570752]
我々は、気候学における特定の地理を特定するために、名前付きエンティティ認識(NER)にBERT(Bidirectional Representations from Transformers)を用いる。
地域ごとの気候傾向分析を行い、特定の地域での気候変動に関連する主要なテーマや関心点を特定する。
これらの地域固有の気候データの詳細な調査は、よりカスタマイズされた政策作成、適応、緩和戦略の作成を可能にする。
論文 参考訳(メタデータ) (2024-01-11T16:44:59Z) - Climate Change Impact on Agricultural Land Suitability: An Interpretable
Machine Learning-Based Eurasia Case Study [94.07737890568644]
2021年現在、世界中で約8億8800万人が飢餓と栄養失調に見舞われている。
気候変動は農地の適性に大きな影響を及ぼし、深刻な食糧不足に繋がる可能性がある。
本研究は,経済・社会問題に苦しむ中央ユーラシアを対象とする。
論文 参考訳(メタデータ) (2023-10-24T15:15:28Z) - Deep generative model super-resolves spatially correlated multiregional
climate data [5.678539713361703]
逆ネットワークに基づく機械学習により、ダウンスケーリングにおける地域間空間相関を正確に再構築できることを示す。
提案手法は,気候変動の影響を地域間一貫した評価に有効である。
本稿では,低分解能降雨場を圧力場に置き換えた深部生成モデルに基づくダウンスケーリング手法の結果について述べる。
論文 参考訳(メタデータ) (2022-09-26T05:45:16Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
本稿では、LC分類と解析を行うために、新しい軽量(89kパラメータのみ)畳み込みニューラルネットワーク(ConvNet)を提案する。
本研究では,実世界のオープンデータソースを3つ組み合わせて13のチャネルを得る。
組込み分析は、いくつかのクラスにおいて限られたパフォーマンスを期待し、最も類似したクラスをグループ化する機会を与えてくれます。
論文 参考訳(メタデータ) (2022-01-26T14:58:51Z) - Farmland Parcel Delineation Using Spatio-temporal Convolutional Networks [77.63950365605845]
ファームパーセル・デライン化は、気候変動政策の開発と管理において重要なカダストラルデータを提供する。
このデータは、極端な気象災害に伴う損害後の補償を評価するための農業保険セクターにも有用である。
衛星画像の利用は、農場の区画整理作業を行うためのスケーラブルで費用対効果の高い方法である。
論文 参考訳(メタデータ) (2020-04-11T19:49:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。