論文の概要: Your Weak LLM is Secretly a Strong Teacher for Alignment
- arxiv url: http://arxiv.org/abs/2409.08813v1
- Date: Fri, 13 Sep 2024 13:24:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-16 16:29:18.269276
- Title: Your Weak LLM is Secretly a Strong Teacher for Alignment
- Title(参考訳): 弱めのLLMは、アライメントの強い教師だ
- Authors: Leitian Tao, Yixuan Li,
- Abstract要約: 既存のアライメントフレームワークは、高価な人的労力または高い計算コストの形で制約を提示します。
本稿では,上位層モデルよりも資源集約度が低い弱いLLMを用いた,有望な中間層を探索する。
弱いLLMは、完全に注釈付けされたデータに匹敵する、あるいは超えるフィードバックを提供することができる。
- 参考スコア(独自算出の注目度): 19.33906256866585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The burgeoning capabilities of large language models (LLMs) have underscored the need for alignment to ensure these models act in accordance with human values and intentions. Existing alignment frameworks present constraints either in the form of expensive human effort or high computational costs. This paper explores a promising middle ground, where we employ a weak LLM that is significantly less resource-intensive than top-tier models, yet offers more automation than purely human feedback. We present a systematic study to evaluate and understand weak LLM's ability to generate feedback for alignment. Our empirical findings demonstrate that weak LLMs can provide feedback that rivals or even exceeds that of fully human-annotated data. Our study indicates a minimized impact of model size on feedback efficacy, shedding light on a scalable and sustainable alignment strategy. To deepen our understanding of alignment under weak LLM feedback, we conduct a series of qualitative and quantitative analyses, offering novel insights into the quality discrepancies between human feedback vs. weak LLM feedback.
- Abstract(参考訳): 大きな言語モデル(LLM)の急成長する能力は、これらのモデルが人間の価値観や意図に応じて動作することを保証するために、アライメントの必要性を強調している。
既存のアライメントフレームワークは、高価な人的労力または高い計算コストの形で制約を提示する。
本稿では,最上位モデルよりも資源集約度が低く,純粋に人間のフィードバックよりも自動化された弱いLLMを採用する,有望な中間層について検討する。
本稿では,弱いLCMがアライメントのためのフィードバックを生成する能力を評価するための系統的研究について述べる。
我々の経験的発見は、弱いLCMが、完全に人間に注釈付けされたデータに匹敵する、あるいは超えるフィードバックを提供することができることを示している。
本研究は、モデルサイズがフィードバックの有効性に与える影響を最小限に抑え、スケーラブルで持続可能なアライメント戦略に光を流すことを示唆している。
弱いLLMフィードバック下でのアライメントの理解を深めるため、我々は定性的かつ定量的な分析を行い、人間のフィードバックと弱いLLMフィードバックの質の相違点に関する新たな洞察を提供する。
関連論文リスト
- A Little Help Goes a Long Way: Efficient LLM Training by Leveraging Small LMs [74.35290684163718]
大規模言語モデル(LLM)開発における最大の課題は、その面倒な事前トレーニングコストである。
本稿では,小言語モデル(SLM)を活用して,LLMの事前学習効率と品質を改善するための有望なパラダイムについて検討する。
論文 参考訳(メタデータ) (2024-10-24T14:31:52Z) - Large Language Models are Inconsistent and Biased Evaluators [2.136983452580014]
我々は,Large Language Models (LLMs) が親しみの偏りを示し,評価の歪んだ分布を示すため,評価値の偏りを示すことを示した。
また, LLM は不整合性評価器であり, テキスト品質の人間の理解に欠かせない相違を誘発する「サンプル間合意」が低く, 感度が高いことがわかった。
論文 参考訳(メタデータ) (2024-05-02T20:42:28Z) - The Lay Person's Guide to Biomedicine: Orchestrating Large Language
Models [38.8292168447796]
大規模言語モデル(LLM)は、テキストの単純化、背景情報生成、テキスト評価において顕著な能力を示した。
我々は,LLMを利用して高品質なバックグラウンド知識を生成する,新しいtextitExplain-then-Summarise LSフレームワークを提案する。
また,複数の視点からレイネスを評価する2つの新しいLS評価指標を提案する。
論文 参考訳(メタデータ) (2024-02-21T03:21:14Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
本稿では,事前学習した報酬モデルを診断ツールとして活用する,新たな合理的評価手法を提案する。
より長い会話は、質問を理解する能力の観点から言語モデルの包括的把握を示す。
この結果から,LLMは日常言語でよく使われる単語レベルの摂動に対する脆弱性をしばしば示している。
論文 参考訳(メタデータ) (2023-09-20T09:23:46Z) - Measuring and Improving Chain-of-Thought Reasoning in Vision-Language Models [61.28463542324576]
視覚言語モデル(VLM)は近年,人間のような出力を生成できる視覚アシスタントとして,強力な有効性を示している。
我々は、既存の最先端のVLMを評価し、最高の性能モデルでさえ、強力な視覚的推論能力と一貫性を示すことができないことを発見した。
本稿では,VLMの推論性能と一貫性の向上を目的とした2段階トレーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2023-09-08T17:49:44Z) - Aligning Large Language Models with Human: A Survey [53.6014921995006]
広範囲なテキストコーパスで訓練されたLarge Language Models (LLM) は、幅広い自然言語処理(NLP)タスクの先導的なソリューションとして登場した。
その顕著な性能にもかかわらず、これらのモデルは、人間の指示を誤解したり、偏見のあるコンテンツを生成したり、事実的に誤った情報を生成するといった、ある種の制限を受ける傾向にある。
本調査では,これらのアライメント技術の概要について概観する。
論文 参考訳(メタデータ) (2023-07-24T17:44:58Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z) - Benchmarking Large Language Models for News Summarization [79.37850439866938]
大規模言語モデル(LLM)は自動要約を約束しているが、その成功の背景にある理由はよく分かっていない。
LLMのゼロショット要約能力の鍵は、モデルサイズではなく、命令チューニングにある。
論文 参考訳(メタデータ) (2023-01-31T18:46:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。