Investigation of Hierarchical Spectral Vision Transformer Architecture for Classification of Hyperspectral Imagery
- URL: http://arxiv.org/abs/2409.09244v1
- Date: Sat, 14 Sep 2024 00:53:13 GMT
- Title: Investigation of Hierarchical Spectral Vision Transformer Architecture for Classification of Hyperspectral Imagery
- Authors: Wei Liu, Saurabh Prasad, Melba Crawford,
- Abstract summary: The theoretical justification for vision Transformers out-performing CNN architectures in HSI classification remains a question.
A unified hierarchical spectral vision Transformer architecture, specifically tailored for HSI classification is investigated.
It is concluded that the unique strength of vision Transformers can be attributed to their overarching architecture.
- Score: 7.839253919389809
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the past three years, there has been significant interest in hyperspectral imagery (HSI) classification using vision Transformers for analysis of remotely sensed data. Previous research predominantly focused on the empirical integration of convolutional neural networks (CNNs) to augment the network's capability to extract local feature information. Yet, the theoretical justification for vision Transformers out-performing CNN architectures in HSI classification remains a question. To address this issue, a unified hierarchical spectral vision Transformer architecture, specifically tailored for HSI classification, is investigated. In this streamlined yet effective vision Transformer architecture, multiple mixer modules are strategically integrated separately. These include the CNN-mixer, which executes convolution operations; the spatial self-attention (SSA)-mixer and channel self-attention (CSA)-mixer, both of which are adaptations of classical self-attention blocks; and hybrid models such as the SSA+CNN-mixer and CSA+CNN-mixer, which merge convolution with self-attention operations. This integration facilitates the development of a broad spectrum of vision Transformer-based models tailored for HSI classification. In terms of the training process, a comprehensive analysis is performed, contrasting classical CNN models and vision Transformer-based counterparts, with particular attention to disturbance robustness and the distribution of the largest eigenvalue of the Hessian. From the evaluations conducted on various mixer models rooted in the unified architecture, it is concluded that the unique strength of vision Transformers can be attributed to their overarching architecture, rather than being exclusively reliant on individual multi-head self-attention (MSA) components.
Related papers
- CMTNet: Convolutional Meets Transformer Network for Hyperspectral Images Classification [3.821081081400729]
Current convolutional neural networks (CNNs) focus on local features in hyperspectral data.
Transformer framework excels at extracting global features from hyperspectral imagery.
This research introduces the Convolutional Meet Transformer Network (CMTNet)
arXiv Detail & Related papers (2024-06-20T07:56:51Z) - NiNformer: A Network in Network Transformer with Token Mixing as a Gating Function Generator [1.3812010983144802]
The attention mechanism was utilized in computer vision as the Vision Transformer ViT.
It comes with the drawback of being expensive and requiring datasets of considerable size for effective optimization.
This paper introduces a new computational block as an alternative to the standard ViT block that reduces the compute burdens.
arXiv Detail & Related papers (2024-03-04T19:08:20Z) - Correlated Attention in Transformers for Multivariate Time Series [22.542109523780333]
We propose a novel correlated attention mechanism, which efficiently captures feature-wise dependencies, and can be seamlessly integrated within the encoder blocks of existing Transformers.
In particular, correlated attention operates across feature channels to compute cross-covariance matrices between queries and keys with different lag values, and selectively aggregate representations at the sub-series level.
This architecture facilitates automated discovery and representation learning of not only instantaneous but also lagged cross-correlations, while inherently capturing time series auto-correlation.
arXiv Detail & Related papers (2023-11-20T17:35:44Z) - Demystify Transformers & Convolutions in Modern Image Deep Networks [82.32018252867277]
This paper aims to identify the real gains of popular convolution and attention operators through a detailed study.
We find that the key difference among these feature transformation modules, such as attention or convolution, lies in their spatial feature aggregation approach.
Our experiments on various tasks and an analysis of inductive bias show a significant performance boost due to advanced network-level and block-level designs.
arXiv Detail & Related papers (2022-11-10T18:59:43Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - Vision Transformer with Convolutions Architecture Search [72.70461709267497]
We propose an architecture search method-Vision Transformer with Convolutions Architecture Search (VTCAS)
The high-performance backbone network searched by VTCAS introduces the desirable features of convolutional neural networks into the Transformer architecture.
It enhances the robustness of the neural network for object recognition, especially in the low illumination indoor scene.
arXiv Detail & Related papers (2022-03-20T02:59:51Z) - Rich CNN-Transformer Feature Aggregation Networks for Super-Resolution [50.10987776141901]
Recent vision transformers along with self-attention have achieved promising results on various computer vision tasks.
We introduce an effective hybrid architecture for super-resolution (SR) tasks, which leverages local features from CNNs and long-range dependencies captured by transformers.
Our proposed method achieves state-of-the-art SR results on numerous benchmark datasets.
arXiv Detail & Related papers (2022-03-15T06:52:25Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
This paper proposes a hybrid framework that integrates the advantages of leveraging detailed spatial information from CNN and the global context provided by transformer for enhanced representation learning.
The proposed approach is an end-to-end compressive image sensing method, composed of adaptive sampling and recovery.
The experimental results demonstrate the effectiveness of the dedicated transformer-based architecture for compressive sensing.
arXiv Detail & Related papers (2021-12-31T04:37:11Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision.
Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and Vision-Mixer, started to lead new trends.
In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons.
arXiv Detail & Related papers (2021-08-30T06:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.