Guiding Vision-Language Model Selection for Visual Question-Answering Across Tasks, Domains, and Knowledge Types
- URL: http://arxiv.org/abs/2409.09269v1
- Date: Sat, 14 Sep 2024 02:29:36 GMT
- Title: Guiding Vision-Language Model Selection for Visual Question-Answering Across Tasks, Domains, and Knowledge Types
- Authors: Neelabh Sinha, Vinija Jain, Aman Chadha,
- Abstract summary: Visual Question-Answering (VQA) has become a key use-case in several applications to aid user experience.
We present a novel dataset derived from established VQA benchmarks, annotated with task types, application domains, and knowledge types.
We also introduce GoEval, a multimodal evaluation metric developed using GPT-4o, achieving a correlation factor of 56.71% with human judgments.
- Score: 0.9217021281095907
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Visual Question-Answering (VQA) has become a key use-case in several applications to aid user experience, particularly after Vision-Language Models (VLMs) achieving good results in zero-shot inference. But evaluating different VLMs for an application requirement using a standardized framework in practical settings is still challenging. This paper introduces a comprehensive framework for evaluating VLMs tailored to VQA tasks in practical settings. We present a novel dataset derived from established VQA benchmarks, annotated with task types, application domains, and knowledge types, three key practical aspects on which tasks can vary. We also introduce GoEval, a multimodal evaluation metric developed using GPT-4o, achieving a correlation factor of 56.71% with human judgments. Our experiments with ten state-of-the-art VLMs reveals that no single model excelling universally, making appropriate selection a key design decision. Proprietary models such as Gemini-1.5-Pro and GPT-4o-mini generally outperform others, though open-source models like InternVL-2-8B and CogVLM-2-Llama-3-19B demonstrate competitive strengths in specific contexts, while providing additional advantages. This study guides the selection of VLMs based on specific task requirements and resource constraints, and can also be extended to other vision-language tasks.
Related papers
- VLRewardBench: A Challenging Benchmark for Vision-Language Generative Reward Models [66.56298924208319]
Vision-language generative reward models (VL-GenRMs) play a crucial role in aligning and evaluating multimodal AI systems.
Current assessment methods rely on AI-annotated preference labels from traditional tasks.
We introduce VL-RewardBench, a benchmark spanning general multimodal queries, visual hallucination detection, and complex reasoning tasks.
arXiv Detail & Related papers (2024-11-26T14:08:34Z) - AutoBench-V: Can Large Vision-Language Models Benchmark Themselves? [55.14033256706175]
Large Vision-Language Models (LVLMs) have become essential for advancing the integration of visual and linguistic information.
We introduce AutoBench-V, an automated framework for serving evaluation on demand.
Through an extensive evaluation of seven popular LVLMs across five demanded user inputs, the framework shows effectiveness and reliability.
arXiv Detail & Related papers (2024-10-28T17:55:08Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
We build universal embedding models capable of handling a wide range of downstream tasks.
Our contributions are twofold: (1) MMEB (Massive Multimodal Embedding Benchmark), which covers 4 meta-tasks (i.e. classification, visual question answering, multimodal retrieval, and visual grounding) and 36 datasets, including 20 training and 16 evaluation datasets, and (2) VLM2Vec (Vision-Language Model -> Vector), a contrastive training framework that converts any state-of-the-art vision-language model into an embedding model via training on MMEB.
arXiv Detail & Related papers (2024-10-07T16:14:05Z) - DARE: Diverse Visual Question Answering with Robustness Evaluation [16.87867803628065]
Vision Language Models (VLMs) extend remarkable capabilities of text-only large language models and vision-only models.
They struggle with a number of crucial vision-language (VL) reasoning abilities such as counting and spatial reasoning.
We introduce DARE, Diverse Visual Question Answering with Robustness Evaluation.
arXiv Detail & Related papers (2024-09-26T16:31:50Z) - Can Visual Language Models Replace OCR-Based Visual Question Answering Pipelines in Production? A Case Study in Retail [8.04779839951237]
This paper analyzes the performance and limits of various vision language models (VLMs) in the context of Visual Question Answering tasks.
We use data from the Retail-786k dataset to investigate the capabilities of pre-trained VLMs to answer detailed questions about advertised products in images.
arXiv Detail & Related papers (2024-08-28T08:25:41Z) - RAVEN: Multitask Retrieval Augmented Vision-Language Learning [5.1583788731239455]
The scaling of large language models to encode all the world's knowledge is unsustainable and has exacerbated resource barriers.
Retrieval-Augmented Generation (RAG) presents a potential solution, yet its application to vision-language models (VLMs) is under explored.
This paper introduces RAVEN, a retrieval augmented VLM framework that enhances base VLMs through efficient, task specific fine-tuning.
arXiv Detail & Related papers (2024-06-27T13:08:35Z) - Prism: A Framework for Decoupling and Assessing the Capabilities of VLMs [83.24033574914425]
We present Prism, an innovative framework designed to disentangle the perception and reasoning processes involved in visual question solving.
Prism comprises two distinct stages: a perception stage that utilizes a VLM to extract and articulate visual information in textual form, and a reasoning stage that formulates responses based on the extracted visual information.
Our analytical framework provides several valuable insights, underscoring Prism's potential as a cost-effective solution for vision-language tasks.
arXiv Detail & Related papers (2024-06-20T17:54:03Z) - AlignMMBench: Evaluating Chinese Multimodal Alignment in Large Vision-Language Models [34.843603169616486]
We introduce AlignMMBench, a comprehensive alignment benchmark for emerging Chinese Vision-Language Models (VLMs)
This benchmark is meticulously curated from real-world scenarios and Chinese Internet sources, encompassing thirteen specific tasks across three categories, and includes both single-turn and multi-turn dialogue scenarios.
To facilitate the evaluation pipeline, we propose CritiqueVLM, a rule-calibrated evaluator that exceeds GPT-4's evaluation ability.
arXiv Detail & Related papers (2024-06-13T16:30:14Z) - Prismatic VLMs: Investigating the Design Space of Visually-Conditioned Language Models [73.40350756742231]
Visually-conditioned language models (VLMs) have seen growing adoption in applications such as visual dialogue, scene understanding, and robotic task planning.
Despite the volume of new releases, key design decisions around image preprocessing, architecture, and optimization are under-explored.
arXiv Detail & Related papers (2024-02-12T18:21:14Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [159.9847317300497]
We propose MM-Vet, an evaluation benchmark that examines large multimodal models (LMMs) on complicated multimodal tasks.
Recent LMMs have shown various intriguing abilities, such as solving math problems written on the blackboard, reasoning about events and celebrities in news images, and explaining visual jokes.
arXiv Detail & Related papers (2023-08-04T17:59:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.