Registration between Point Cloud Streams and Sequential Bounding Boxes via Gradient Descent
- URL: http://arxiv.org/abs/2409.09312v1
- Date: Sat, 14 Sep 2024 05:16:34 GMT
- Title: Registration between Point Cloud Streams and Sequential Bounding Boxes via Gradient Descent
- Authors: Xuesong Li, Xinge Zhu, Yuexin Ma, Subhan Khan, Jose Guivant,
- Abstract summary: We propose an algorithm for registering sequential bounding boxes with point cloud streams.
We show that the proposed method performs remarkably well with a 40% improvement in IoU.
- Score: 21.13347625031356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose an algorithm for registering sequential bounding boxes with point cloud streams. Unlike popular point cloud registration techniques, the alignment of the point cloud and the bounding box can rely on the properties of the bounding box, such as size, shape, and temporal information, which provides substantial support and performance gains. Motivated by this, we propose a new approach to tackle this problem. Specifically, we model the registration process through an overall objective function that includes the final goal and all constraints. We then optimize the function using gradient descent. Our experiments show that the proposed method performs remarkably well with a 40\% improvement in IoU and demonstrates more robust registration between point cloud streams and sequential bounding boxes
Related papers
- P2P-Bridge: Diffusion Bridges for 3D Point Cloud Denoising [81.92854168911704]
We tackle the task of point cloud denoising through a novel framework that adapts Diffusion Schr"odinger bridges to points clouds.
Experiments on object datasets show that P2P-Bridge achieves significant improvements over existing methods.
arXiv Detail & Related papers (2024-08-29T08:00:07Z) - DIPR: Efficient Point Cloud Registration via Dynamic Iteration [4.491867613612359]
We introduce a novel Efficient Point Cloud Registration via Dynamic It framework, DIPR, that makes the neural network interactively focus on overlapping points based on sparser input points.
Our proposed approach achieves superior registration accuracy while significantly reducing computational time and GPU memory consumption compared to state-of-the-art methods.
arXiv Detail & Related papers (2023-12-05T16:47:46Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
We propose a novel pre-training method called Point cloud Diffusion pre-training (PointDif)
PointDif achieves substantial improvement across various real-world datasets for diverse downstream tasks such as classification, segmentation and detection.
arXiv Detail & Related papers (2023-11-25T08:10:05Z) - SDFReg: Learning Signed Distance Functions for Point Cloud Registration [8.465771798353904]
We propose a novel point cloud registration framework for imperfect point clouds.
We replace the problem of rigid registration between point clouds with a registration problem between the point cloud and the neural implicit function.
Our method showcases remarkable robustness in the face of challenges such as noise, incompleteness, and density changes of point clouds.
arXiv Detail & Related papers (2023-04-18T12:14:20Z) - PointAttN: You Only Need Attention for Point Cloud Completion [89.88766317412052]
Point cloud completion refers to completing 3D shapes from partial 3D point clouds.
We propose a novel neural network for processing point cloud in a per-point manner to eliminate kNNs.
The proposed framework, namely PointAttN, is simple, neat and effective, which can precisely capture the structural information of 3D shapes.
arXiv Detail & Related papers (2022-03-16T09:20:01Z) - Fast and Robust Registration of Partially Overlapping Point Clouds [5.073765501263891]
Real-time registration of partially overlapping point clouds has emerging applications in cooperative perception for autonomous vehicles.
Relative translation between point clouds in these applications is higher than in traditional SLAM and odometry applications.
We propose a novel registration method for partially overlapping point clouds where correspondences are learned using an efficient point-wise feature encoder.
arXiv Detail & Related papers (2021-12-18T12:39:05Z) - UPDesc: Unsupervised Point Descriptor Learning for Robust Registration [54.95201961399334]
UPDesc is an unsupervised method to learn point descriptors for robust point cloud registration.
We show that our learned descriptors yield superior performance over existing unsupervised methods.
arXiv Detail & Related papers (2021-08-05T17:11:08Z) - Consistent Two-Flow Network for Tele-Registration of Point Clouds [74.51029406361997]
We present a learning-based technique that allows registration between point clouds, presented in arbitrary poses, and having little or even no overlap.
Our technique is based on a novel neural network design that learns a prior of a class of shapes and can complete a partial shape.
We show that, compared with each separate flow, this two-flow training leads to robust and reliable tele-registration.
arXiv Detail & Related papers (2021-06-01T09:03:21Z) - SoftPoolNet: Shape Descriptor for Point Cloud Completion and
Classification [93.54286830844134]
We propose a method for 3D object completion and classification based on point clouds.
For the decoder stage, we propose regional convolutions, a novel operator aimed at maximizing the global activation entropy.
We evaluate our approach on different 3D tasks such as object completion and classification, achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2020-08-17T14:32:35Z) - DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point
Cloud Registration [12.471564670462344]
This work addresses the problem of point cloud registration using deep neural networks.
We propose an approach to predict the alignment between two point clouds with overlapping data content, but displaced origins.
Our approach achieves state-of-the-art accuracy and the lowest run-time of the compared methods.
arXiv Detail & Related papers (2020-07-22T08:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.