論文の概要: Schrödinger Bridge Flow for Unpaired Data Translation
- arxiv url: http://arxiv.org/abs/2409.09347v1
- Date: Sat, 14 Sep 2024 07:34:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:19:23.529874
- Title: Schrödinger Bridge Flow for Unpaired Data Translation
- Title(参考訳): 未ペアデータ翻訳のためのシュレーディンガー橋流れ
- Authors: Valentin De Bortoli, Iryna Korshunova, Andriy Mnih, Arnaud Doucet,
- Abstract要約: 最適輸送 (OT) マップの動的エントロピー正規化版である Schr"odinger Bridge を計算するための新しいアルゴリズムを提案する。
このアルゴリズムは、経路測度の流れの離散化に対応しており、これをSchr"odinger Bridge Flowと呼ぶ。
我々は,不適切なデータ翻訳タスクにおいて,アルゴリズムの性能を実証する。
- 参考スコア(独自算出の注目度): 38.19632736212184
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mass transport problems arise in many areas of machine learning whereby one wants to compute a map transporting one distribution to another. Generative modeling techniques like Generative Adversarial Networks (GANs) and Denoising Diffusion Models (DDMs) have been successfully adapted to solve such transport problems, resulting in CycleGAN and Bridge Matching respectively. However, these methods do not approximate Optimal Transport (OT) maps, which are known to have desirable properties. Existing techniques approximating OT maps for high-dimensional data-rich problems, such as DDM-based Rectified Flow and Schr\"odinger Bridge procedures, require fully training a DDM-type model at each iteration, or use mini-batch techniques which can introduce significant errors. We propose a novel algorithm to compute the Schr\"odinger Bridge, a dynamic entropy-regularised version of OT, that eliminates the need to train multiple DDM-like models. This algorithm corresponds to a discretisation of a flow of path measures, which we call the Schr\"odinger Bridge Flow, whose only stationary point is the Schr\"odinger Bridge. We demonstrate the performance of our algorithm on a variety of unpaired data translation tasks.
- Abstract(参考訳): 大量輸送問題は、ある分布を別の分布に輸送する地図を計算したいという機械学習の多くの領域で発生する。
GAN(Generative Adversarial Networks)やDDM(Denoising Diffusion Models)といったジェネレーティブモデリング技術は,このようなトランスポート問題の解決に成功しており,それぞれCycleGANとBridge Matchingを実現している。
しかしながら、これらの方法は望ましい性質を持つことが知られている最適輸送(OT)写像を近似しない。
DDMベースのRectified FlowやSchr\"odinger Bridgeなどの高次元データリッチな問題に対して既存のOTマップを近似する手法では、各イテレーションでDDMタイプのモデルを十分に訓練するか、あるいは重大なエラーを起こすミニバッチ技術を使用する必要がある。
我々は,複数のDDM様モデルをトレーニングする必要のない,動的エントロピー規則化されたOTバージョンであるSchr\"odinger Bridgeを計算するための新しいアルゴリズムを提案する。
このアルゴリズムは経路測度の流れの離散化に対応しており、これはSchr\"odinger Bridge Flowと呼ばれ、その静止点はSchr\"odinger Bridgeである。
我々は,不適切なデータ翻訳タスクにおいて,アルゴリズムの性能を実証する。
関連論文リスト
- Latent Schrodinger Bridge: Prompting Latent Diffusion for Fast Unpaired Image-to-Image Translation [58.19676004192321]
ノイズからの画像生成とデータからの逆変換の両方を可能にする拡散モデル (DM) は、強力な未ペア画像対イメージ(I2I)翻訳アルゴリズムにインスピレーションを与えている。
我々は、最小輸送コストの分布間の微分方程式(SDE)であるSchrodinger Bridges (SBs) を用いてこの問題に取り組む。
この観測に触発されて,SB ODE を予め訓練した安定拡散により近似する潜在シュロディンガー橋 (LSB) を提案する。
提案アルゴリズムは,従来のDMのコストをわずかに抑えながら,教師なし環境での競合的I2I翻訳を実現していることを示す。
論文 参考訳(メタデータ) (2024-11-22T11:24:14Z) - Neural Shrödinger Bridge Matching for Pansharpening [14.131205410479357]
近年,パンシャルペン分野における拡散確率モデル (DPM) が注目されている。
逆問題としてパンシャーペンのタスクに直接DPMを適用する際の欠点を同定する。
両問題に対処するSchr"odinger bridge matching法を提案する。
論文 参考訳(メタデータ) (2024-04-17T14:17:05Z) - Flow-based Distributionally Robust Optimization [23.232731771848883]
We present a framework, called $textttFlowDRO$, for solve flow-based distributionally robust optimization (DRO) problem with Wasserstein uncertainty set。
我々は、連続した最悪のケース分布(Last Favorable Distribution, LFD)とそれからのサンプルを見つけることを目指している。
本稿では、逆学習、分布論的に堅牢な仮説テスト、およびデータ駆動型分布摂動差分プライバシーの新しいメカニズムを実証する。
論文 参考訳(メタデータ) (2023-10-30T03:53:31Z) - Denoising Diffusion Bridge Models [54.87947768074036]
拡散モデルは、プロセスを使用してデータにノイズをマッピングする強力な生成モデルである。
画像編集のような多くのアプリケーションでは、モデル入力はランダムノイズではない分布から来る。
本研究では, DDBM(Denoising Diffusion Bridge Models)を提案する。
論文 参考訳(メタデータ) (2023-09-29T03:24:24Z) - Diffusion Bridge Mixture Transports, Schr\"odinger Bridge Problems and
Generative Modeling [4.831663144935879]
本稿では, 動的シュリンガー橋問題の解法を目的とした, サンプリング型反復型拡散橋混合法 (IDBM) を提案する。
IDBM手順は、各イテレーションにおける目標確率測度間の有効な輸送を実現するという魅力的な性質を示す。
論文 参考訳(メタデータ) (2023-04-03T12:13:42Z) - Diffusion Schr\"odinger Bridge Matching [36.95088080680221]
反復マルコフフィッティング(IMF)と拡散シュリンガーブリッジマッチング(DSBM)を紹介する。
IMFはSB問題を解決するための新しい手法であり、DSBMはIMFの反復計算のための新しい数値アルゴリズムである。
様々な問題についてDSBMの性能を実証する。
論文 参考訳(メタデータ) (2023-03-29T16:59:22Z) - Entropic Neural Optimal Transport via Diffusion Processes [105.34822201378763]
本稿では,連続確率分布間のエントロピー最適輸送(EOT)計画を計算するための新しいアルゴリズムを提案する。
提案アルゴリズムは,シュリンガーブリッジ問題(Schr"odinger Bridge problem)として知られるEOTの動的バージョンのサドル点再構成に基づく。
大規模EOTの従来の手法とは対照的に,我々のアルゴリズムはエンドツーエンドであり,単一の学習ステップで構成されている。
論文 参考訳(メタデータ) (2022-11-02T14:35:13Z) - Manifold Interpolating Optimal-Transport Flows for Trajectory Inference [64.94020639760026]
最適輸送流(MIOFlow)を補間するマニフォールド補間法を提案する。
MIOFlowは、散発的なタイムポイントで撮影された静的スナップショットサンプルから、連続的な人口動態を学習する。
本手法は, 胚体分化および急性骨髄性白血病の治療から得られたscRNA-seqデータとともに, 分岐とマージによるシミュレーションデータについて検討した。
論文 参考訳(メタデータ) (2022-06-29T22:19:03Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。