論文の概要: MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion Corrected MRI
- arxiv url: http://arxiv.org/abs/2409.09370v1
- Date: Sat, 14 Sep 2024 08:51:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 21:09:38.708583
- Title: MotionTTT: 2D Test-Time-Training Motion Estimation for 3D Motion Corrected MRI
- Title(参考訳): MotionTTT:3次元運動補正MRIのための2次元テスト時間運動推定
- Authors: Tobit Klug, Kun Wang, Stefan Ruschke, Reinhard Heckel,
- Abstract要約: 高精度な動き推定のための深層学習に基づくテスト時間学習法を提案する。
本手法は, 単純な信号とニューラルネットワークモデルに対して, 動作パラメータを確実に再構成できることを示す。
- 参考スコア(独自算出の注目度): 24.048132427816704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A major challenge of the long measurement times in magnetic resonance imaging (MRI), an important medical imaging technology, is that patients may move during data acquisition. This leads to severe motion artifacts in the reconstructed images and volumes. In this paper, we propose a deep learning-based test-time-training method for accurate motion estimation. The key idea is that a neural network trained for motion-free reconstruction has a small loss if there is no motion, thus optimizing over motion parameters passed through the reconstruction network enables accurate estimation of motion. The estimated motion parameters enable to correct for the motion and to reconstruct accurate motion-corrected images. Our method uses 2D reconstruction networks to estimate rigid motion in 3D, and constitutes the first deep learning based method for 3D rigid motion estimation towards 3D-motion-corrected MRI. We show that our method can provably reconstruct motion parameters for a simple signal and neural network model. We demonstrate the effectiveness of our method for both retrospectively simulated motion and prospectively collected real motion-corrupted data.
- Abstract(参考訳): 重要な医用画像技術であるMRI(MRI)の長期計測における大きな課題は、患者がデータ取得中に移動する可能性があることである。
これにより、再建された画像や巻物に厳しい運動アーティファクトが生じる。
本論文では,高精度な動き推定のための深層学習に基づくテスト時間学習手法を提案する。
キーとなる考え方は、動きのない再構築のために訓練されたニューラルネットワークは、動きがなければ損失が小さいため、再構成ネットワークに渡される動きパラメータを最適化することで、動きの正確な推定が可能になるということである。
推定された動きパラメータは、動きを補正し、正確な動き補正画像の再構成を可能にする。
本手法は3次元の剛性運動を推定するために2次元再構成ネットワークを用い,3次元運動補正MRIに向けた3次元剛性運動推定のための最初の深部学習法を構成する。
本手法は, 単純な信号とニューラルネットワークモデルに対して, 動作パラメータを確実に再構成できることを示す。
本手法の有効性を遡及的にシミュレーションした動きと,前向きに収集した実動きの破損データの両方に対して示す。
関連論文リスト
- Highly efficient non-rigid registration in k-space with application to cardiac Magnetic Resonance Imaging [10.618048010632728]
非剛性動作推定のためのローカル・オール・パス・アテンション・ネットワーク(LAPANet)と呼ばれる,自己教師型深層学習に基づく新しいフレームワークを提案する。
LAPANetは,種々のサンプリング軌跡と加速度速度で心運動推定を行った。
非剛性運動に対する高時間分解能(5ミリ秒未満)は、動的およびリアルタイムMRIアプリケーションにおける動きの検出、追跡、修正のための新しい道を開く。
論文 参考訳(メタデータ) (2024-10-24T15:19:59Z) - Motion-Informed Deep Learning for Brain MR Image Reconstruction Framework [7.639405634241267]
運動は臨床MRIの約30%に存在していると推定されている。
深層学習アルゴリズムは画像再構成タスクと運動補正タスクの両方に有効であることが示されている。
画像と正しい動きを同時に高速化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-05-28T02:16:35Z) - SISMIK for brain MRI: Deep-learning-based motion estimation and model-based motion correction in k-space [0.0]
本研究では,脳の2次元スピンエコースキャンにおける動き推定と補正の振り返り手法を提案する。
この手法は、深いニューラルネットワークのパワーを利用してk空間の運動パラメータを推定する。
モデルに基づくアプローチを用いて、劣化した画像を復元し、「幻覚」を避ける。
論文 参考訳(メタデータ) (2023-12-20T17:38:56Z) - Unsupervised 3D Pose Estimation with Non-Rigid Structure-from-Motion
Modeling [83.76377808476039]
本研究では,人間のポーズの変形をモデル化し,それに伴う拡散に基づく動きを事前に設計する手法を提案する。
動作中の3次元人間の骨格を復元する作業は3次元基準骨格の推定に分割する。
混合時空間NASfMformerを用いて、各フレームの3次元基準骨格と骨格変形を2次元観測シーケンスから同時に推定する。
論文 参考訳(メタデータ) (2023-08-18T16:41:57Z) - Data Consistent Deep Rigid MRI Motion Correction [9.551748050454378]
運動アーティファクトはMRIの広範にわたる問題であり、人口レベルの画像研究において誤診や誤認を引き起こす。
現在の反射型剛性運動補正技術は、画像と運動パラメータの推定を共同で最適化する。
本稿では,厳密な動きパラメータのみを探索するために,深層ネットワークを用いて共同動画像パラメータ探索を削減した。
論文 参考訳(メタデータ) (2023-01-25T00:21:31Z) - MoCaNet: Motion Retargeting in-the-wild via Canonicalization Networks [77.56526918859345]
そこで本研究では,制御された環境から3次元動作タスクを実現する新しいフレームワークを提案する。
モーションキャプチャシステムや3D再構成手順を使わずに、2Dモノクロ映像のキャラクタから3Dキャラクタへの体動を可能にする。
論文 参考訳(メタデータ) (2021-12-19T07:52:05Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
既存のディープモデルは、ほぼ正確に見えるエラーを含むビデオから2Dと3Dキネマティックのポーズを予測する。
本稿では,最初の2次元と3次元のポーズ推定を入力として,映像系列から3次元の人間の動きを推定する物理に基づく手法を提案する。
論文 参考訳(メタデータ) (2020-07-22T21:09:11Z) - Inertial Measurements for Motion Compensation in Weight-bearing
Cone-beam CT of the Knee [6.7461735822055715]
膝のCTスキャン中の不随意運動は、再建されたボリュームのアーティファクトを引き起こすため、臨床診断には使用できない。
被験者の脚に慣性測定装置(IMU)を装着し,スキャン中の運動を測定する。
論文 参考訳(メタデータ) (2020-07-09T09:26:27Z) - Motion Guided 3D Pose Estimation from Videos [81.14443206968444]
本研究では,2次元ポーズから1次元の人物ポーズ推定を行う問題に対して,運動損失と呼ばれる新たな損失関数を提案する。
運動損失の計算では、ペアワイズ・モーション・エンコーディング(ペアワイズ・モーション・エンコーディング)と呼ばれる単純なキーポイント・モーションの表現が導入された。
UGCN(U-shaped GCN)と呼ばれる新しいグラフ畳み込みネットワークアーキテクチャを設計し,短期および長期の動作情報の両方をキャプチャする。
論文 参考訳(メタデータ) (2020-04-29T06:59:30Z) - A Deep Learning Approach for Motion Forecasting Using 4D OCT Data [69.62333053044712]
我々は,OCTボリュームのストリームを用いたエンド・ツー・エンド動作予測と推定のための4次元時間深度学習を提案する。
提案手法は,全体の平均相関97.41%の動作予測を実現するとともに,従来の3D手法と比較して2.5倍の動作推定性能を向上する。
論文 参考訳(メタデータ) (2020-04-21T15:59:53Z) - Spatio-Temporal Deep Learning Methods for Motion Estimation Using 4D OCT
Image Data [63.73263986460191]
特定の対象領域の局所化と運動の推定は、外科的介入の際のナビゲーションの一般的な問題である。
OCT画像ボリュームの時間的ストリームを用いることで、深層学習に基づく動き推定性能が向上するかどうかを検討する。
モデル入力に4D情報を使用すると、合理的な推論時間を維持しながら性能が向上する。
論文 参考訳(メタデータ) (2020-04-21T15:43:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。