論文の概要: Constructive Approach to Bidirectional Causation between Qualia Structure and Language Emergence
- arxiv url: http://arxiv.org/abs/2409.09413v1
- Date: Sat, 14 Sep 2024 11:03:12 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 20:47:24.973732
- Title: Constructive Approach to Bidirectional Causation between Qualia Structure and Language Emergence
- Title(参考訳): クアリア構造と言語創発の双方向因果関係に対する構成的アプローチ
- Authors: Tadahiro Taniguchi, Masafumi Oizumi, Noburo Saji, Takato Horii, Naotsugu Tsuchiya,
- Abstract要約: 本稿では,言語出現と主観的経験の関連構造との双方向因果関係について考察する。
我々は、個人間の内部表現を整合させる過程を通じて、たとえば構文・意味構造のような分布意味を持つ言語が出現したかもしれないと仮定する。
- 参考スコア(独自算出の注目度): 5.906966694759679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a novel perspective on the bidirectional causation between language emergence and relational structure of subjective experiences, termed qualia structure, and lays out the constructive approach to the intricate dependency between the two. We hypothesize that languages with distributional semantics, e.g., syntactic-semantic structures, may have emerged through the process of aligning internal representations among individuals, and such alignment of internal representations facilitates more structured language. This mutual dependency is suggested by the recent advancements in AI and symbol emergence robotics, and collective predictive coding (CPC) hypothesis, in particular. Computational studies show that neural network-based language models form systematically structured internal representations, and multimodal language models can share representations between language and perceptual information. This perspective suggests that language emergence serves not only as a mechanism creating a communication tool but also as a mechanism for allowing people to realize shared understanding of qualitative experiences. The paper discusses the implications of this bidirectional causation in the context of consciousness studies, linguistics, and cognitive science, and outlines future constructive research directions to further explore this dynamic relationship between language emergence and qualia structure.
- Abstract(参考訳): 本稿では,主観的経験の言語出現と関係構造の双方向因果関係に関する新たな視点を提示し,両者の複雑な依存関係に対する構成的アプローチを概説する。
我々は、個人間の内部表現の整合過程を通じて、分布意味論、例えば統語・意味構造を持つ言語が出現し、内部表現の整合がより構造化された言語を促進すると仮定する。
この相互依存は、AIとシンボル発生ロボティクスの最近の進歩、特に集合予測符号化(CPC)仮説によって示唆されている。
計算学的研究により、ニューラルネットワークに基づく言語モデルは体系的に構造化された内部表現を形成し、マルチモーダル言語モデルは言語と知覚情報の間の表現を共有できることが示されている。
この視点は、言語の出現がコミュニケーションツールを作成するメカニズムとしてだけでなく、人々が質的な経験の共通理解を実現できるメカニズムとしても役立つことを示唆している。
本稿では、意識研究、言語学、認知科学の文脈におけるこの双方向因果関係の意義を論じ、言語出現と準構造とのダイナミックな関係をさらに探求するために、今後の建設研究の方向性を概説する。
関連論文リスト
- Analyzing The Language of Visual Tokens [48.62180485759458]
我々は、離散的な視覚言語を分析するために、自然言語中心のアプローチをとる。
トークンの高度化はエントロピーの増大と圧縮の低下を招き,トークンが主にオブジェクト部品を表すことを示す。
また、視覚言語には結合的な文法構造が欠如していることが示され、自然言語と比較して難易度が高く、階層構造が弱いことが判明した。
論文 参考訳(メタデータ) (2024-11-07T18:59:28Z) - The Problem of Alignment [1.2277343096128712]
大規模言語モデルは、大きなコーパスから統計的パターンとして学習されたシーケンスを生成する。
最初のトレーニングモデルが人間の価値観と一致しなくてはならない場合、他のモデルよりも一定の継続が望ましい。
ユーザとモデル間の双方向インタラクションとして,この構造化の実践について検討する。
論文 参考訳(メタデータ) (2023-12-30T11:44:59Z) - The Acquisition of Semantic Relationships between words [0.0]
意味関係の研究は、意味関係と言語の形態的特徴との密接な関係を明らかにしている。
意味的関係と言語形態学の関係を掘り下げることで、語の構造が言語の解釈と理解にどのように貢献するかについての深い洞察を得ることができる。
論文 参考訳(メタデータ) (2023-07-12T19:18:55Z) - Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
本研究の目的は,トランスフォーマーに基づくニューラルネットワークモデルが語彙意味論を推論するかどうかを検討することである。
考慮される意味的性質は、テリシティ(定性とも組み合わされる)と作用性である。
論文 参考訳(メタデータ) (2023-07-06T10:52:22Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Feature Interactions Reveal Linguistic Structure in Language Models [2.0178765779788495]
本研究では,ポストホック解釈における特徴帰属手法の文脈における特徴的相互作用について検討した。
私たちは、正規言語分類タスクで完璧にモデルをトレーニングする灰色のボックスの方法論を開発します。
特定の構成下では、いくつかの手法が実際にモデルが獲得した文法規則を明らかにすることができることを示す。
論文 参考訳(メタデータ) (2023-06-21T11:24:41Z) - Interactive Natural Language Processing [67.87925315773924]
対話型自然言語処理(iNLP)は,NLP分野における新しいパラダイムとして登場した。
本稿では,iNLPの概念の統一的定義と枠組みを提案することから,iNLPに関する包括的調査を行う。
論文 参考訳(メタデータ) (2023-05-22T17:18:29Z) - A Knowledge-Enhanced Adversarial Model for Cross-lingual Structured
Sentiment Analysis [31.05169054736711]
言語間構造的感情分析タスクは、ソース言語からターゲット言語へ知識を伝達することを目的としている。
本稿では,暗黙的分散と明示的構造的知識を両立させた知識強化逆数モデル(textttKEAM)を提案する。
我々は5つのデータセットの実験を行い、textttKEAMと教師なしおよび教師なしの両方の手法を比較した。
論文 参考訳(メタデータ) (2022-05-31T03:07:51Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - Structured Attention for Unsupervised Dialogue Structure Induction [110.12561786644122]
本稿では、構造化された注意層を離散潜在状態を持つ変化型リカレントニューラルネットワーク(VRNN)モデルに組み込んで、教師なしの方法で対話構造を学ぶことを提案する。
バニラVRNNと比較して、構造化された注意は、構造的帰納バイアスを強制しながら、ソース文の埋め込みの異なる部分にフォーカスすることができる。
論文 参考訳(メタデータ) (2020-09-17T23:07:03Z) - Language (Re)modelling: Towards Embodied Language Understanding [33.50428967270188]
本研究は, 具体的認知言語学(ECL)の理念に基づく表現と学習へのアプローチを提案する。
ECLによると、自然言語は本質的に(プログラミング言語のように)実行可能である。
本稿では,比喩的推論とシミュレーションによるグラウンドディングの利用が,NLUシステムに大きな恩恵をもたらすことを論じる。
論文 参考訳(メタデータ) (2020-05-01T10:57:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。