論文の概要: Leveraging Large Language Models for Predicting Cost and Duration in Software Engineering Projects
- arxiv url: http://arxiv.org/abs/2409.09617v1
- Date: Sun, 15 Sep 2024 05:35:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-17 19:58:08.832315
- Title: Leveraging Large Language Models for Predicting Cost and Duration in Software Engineering Projects
- Title(参考訳): ソフトウェアエンジニアリングプロジェクトにおけるコストと期間予測のための大規模言語モデルの活用
- Authors: Justin Carpenter, Chia-Ying Wu, Nasir U. Eisty,
- Abstract要約: 本研究では,プロジェクトコスト予測の精度とユーザビリティを高めるために,LLM(Large Language Models)を用いた革新的な手法を提案する。
従来の手法と現代の機械学習技術に対するLLMの有効性について検討する。
本研究の目的は,LLMがより正確な推定を得るだけでなく,複雑な予測モデルに代わるユーザフレンドリな代替手段を提供することを示すことである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate estimation of project costs and durations remains a pivotal challenge in software engineering, directly impacting budgeting and resource management. Traditional estimation techniques, although widely utilized, often fall short due to their complexity and the dynamic nature of software development projects. This study introduces an innovative approach using Large Language Models (LLMs) to enhance the accuracy and usability of project cost predictions. We explore the efficacy of LLMs against traditional methods and contemporary machine learning techniques, focusing on their potential to simplify the estimation process and provide higher accuracy. Our research is structured around critical inquiries into whether LLMs can outperform existing models, the ease of their integration into current practices, outperform traditional estimation, and why traditional methods still prevail in industry settings. By applying LLMs to a range of real-world datasets and comparing their performance to both state-of-the-art and conventional methods, this study aims to demonstrate that LLMs not only yield more accurate estimates but also offer a user-friendly alternative to complex predictive models, potentially transforming project management strategies within the software industry.
- Abstract(参考訳): プロジェクトコストと期間の正確な見積もりは、ソフトウェアエンジニアリングにおいて重要な課題であり、予算やリソース管理に直接影響を与えます。
従来の見積技術は広く利用されているが、その複雑さとソフトウェア開発プロジェクトの動的な性質のために、しばしば不足している。
本研究では,プロジェクトコスト予測の精度とユーザビリティを高めるために,LLM(Large Language Models)を用いた革新的な手法を提案する。
従来の手法や現代の機械学習技術に対するLLMの有効性について検討し,評価プロセスの簡素化と精度の向上に焦点をあてる。
我々の研究は、LLMが既存のモデルより優れているかどうか、現在のプラクティスへの統合の容易さ、従来の見積もりよりも優れているか、そしてなぜ従来の手法が業界でまだ普及しているのか、といった重要な問いに基づいて構成されている。
本研究は,LLMを実世界のさまざまなデータセットに適用し,その性能を最先端および従来手法と比較することにより,LCMがより正確な推定値を得るだけでなく,複雑な予測モデルに代わるユーザフレンドリな代替手段を提供し,ソフトウェア産業におけるプロジェクト管理戦略を変革する可能性を実証することを目的とする。
関連論文リスト
- Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
本研究では,大規模言語モデル (LLM) を用いて予測モデルの事前分布を推定する手法を提案する。
本研究では,LLMがパラメータ分布を真に生成するかどうかを評価するとともに,文脈内学習と事前推論のためのモデル選択戦略を提案する。
その結果,LLMによる事前パラメータ分布は,低データ設定における非形式的先行よりも予測誤差を著しく低減することがわかった。
論文 参考訳(メタデータ) (2024-11-26T10:13:39Z) - Experiences from Using LLMs for Repository Mining Studies in Empirical Software Engineering [12.504438766461027]
大規模言語モデル(LLM)は、ソフトウェアリポジトリを分析する革新的な方法を提供することで、ソフトウェア工学(SE)を変革した。
私たちの研究は、PRIMES(Prompt Refinement and Insights for Mining Empirical Software repository)というフレームワークをまとめています。
この結果,PRIMESの標準化により,LLMを用いた研究の信頼性と精度が向上することが示唆された。
論文 参考訳(メタデータ) (2024-11-15T06:08:57Z) - Do Advanced Language Models Eliminate the Need for Prompt Engineering in Software Engineering? [18.726229967976316]
本稿では,高度大言語モデル (LLM) の文脈における様々な迅速な工学的手法を再評価する。
以上の結果から, 先進モデルに適用した場合, 先進モデルに適用した場合, 早期のLLM開発技術により, メリットが低下したり, 性能が低下する可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-04T13:56:37Z) - Understanding the Performance and Estimating the Cost of LLM Fine-Tuning [9.751868268608675]
コスト効率の良い特定のタスクのための微調整大型言語モデル(LLM)。
本稿では,Sparse Mixture of Experts (MoE)をベースとしたLLMファインチューニングを特徴付ける。
また,クラウド上でのLCM微調整のコストを推定するための解析モデルを開発し,検証する。
論文 参考訳(メタデータ) (2024-08-08T16:26:07Z) - Large Language Model Agent as a Mechanical Designer [7.136205674624813]
本研究では,FEMモジュールと事前学習LLMを統合する新しい手法を提案する。
FEMモジュールはそれぞれの設計を評価し、重要なフィードバックを提供し、LLMにドメイン固有のトレーニングを必要とせずに継続的に学習し、計画し、生成し、設計を最適化するよう指示する。
その結果, LLMをベースとしたエージェントは, 自然言語仕様に準拠したトラスを最大90%の確率で生成できることがわかった。
論文 参考訳(メタデータ) (2024-04-26T16:41:24Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
本稿では,Huawei CloudのOpsVerse AIソルバに機械学習(ML)技術を統合するための総合的研究について述べる。
本稿では,実世界の多面構造を反映した生成モデルを用いて,複雑なSATインスタンスとMILPインスタンスを生成する手法を紹介する。
本稿では,解解器性能を著しく向上させる,最先端パラメータチューニングアルゴリズムの導入について詳述する。
論文 参考訳(メタデータ) (2024-01-11T15:02:15Z) - Knowledge Editing for Large Language Models: A Survey [51.01368551235289]
大規模言語モデル(LLM)の大きな欠点の1つは、事前学習に要する計算コストである。
知識に基づくモデル編集(KME)が注目を集めており、特定の知識を組み込むためにLLMを正確に修正することを目的としている。
論文 参考訳(メタデータ) (2023-10-24T22:18:13Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Recent Advances in Software Effort Estimation using Machine Learning [0.0]
私たちは、アジャイルでない方法論とアジャイルな方法論の両方でソフトウェア開発の取り組みを見積もるのに使用される、最新の機械学習アプローチについてレビューします。
私たちは、労力見積の可能性の観点から、アジャイル方法論を採用するメリットを分析します。
我々は、データ駆動予測モデルによるソフトウェア作業の推定について、現在および将来のトレンドの分析で結論付けている。
論文 参考訳(メタデータ) (2023-03-06T20:25:16Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。