論文の概要: Experiences from Using LLMs for Repository Mining Studies in Empirical Software Engineering
- arxiv url: http://arxiv.org/abs/2411.09974v1
- Date: Fri, 15 Nov 2024 06:08:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-18 15:39:02.419106
- Title: Experiences from Using LLMs for Repository Mining Studies in Empirical Software Engineering
- Title(参考訳): 経験的ソフトウェア工学におけるレポジトリマイニング研究におけるLLMの使用経験
- Authors: Vincenzo de Martino, Joel Castaño, Fabio Palomba, Xavier Franch, Silverio Martínez-Fernández,
- Abstract要約: 大規模言語モデル(LLM)は、ソフトウェアリポジトリを分析する革新的な方法を提供することで、ソフトウェア工学(SE)を変革した。
私たちの研究は、PRIMES(Prompt Refinement and Insights for Mining Empirical Software repository)というフレームワークをまとめています。
この結果,PRIMESの標準化により,LLMを用いた研究の信頼性と精度が向上することが示唆された。
- 参考スコア(独自算出の注目度): 12.504438766461027
- License:
- Abstract: Context: The emergence of Large Language Models (LLMs) has significantly transformed Software Engineering (SE) by providing innovative methods for analyzing software repositories. Objectives: Our objective is to establish a practical framework for future SE researchers needing to enhance the data collection and dataset while conducting software repository mining studies using LLMs. Method: This experience report shares insights from two previous repository mining studies, focusing on the methodologies used for creating, refining, and validating prompts that enhance the output of LLMs, particularly in the context of data collection in empirical studies. Results: Our research packages a framework, coined Prompt Refinement and Insights for Mining Empirical Software repositories (PRIMES), consisting of a checklist that can improve LLM usage performance, enhance output quality, and minimize errors through iterative processes and comparisons among different LLMs. We also emphasize the significance of reproducibility by implementing mechanisms for tracking model results. Conclusion: Our findings indicate that standardizing prompt engineering and using PRIMES can enhance the reliability and reproducibility of studies utilizing LLMs. Ultimately, this work calls for further research to address challenges like hallucinations, model biases, and cost-effectiveness in integrating LLMs into workflows.
- Abstract(参考訳): コンテキスト: 大規模言語モデル(LLM)の出現は、ソフトウェアリポジトリを分析する革新的な方法を提供することで、ソフトウェア工学(SE)を大きく変えました。
目的: LLMを用いたソフトウェアリポジトリマイニング研究を実施しながら,データ収集とデータセットを強化するために必要な,将来のSE研究者のための実践的なフレームワークを確立することを目的とする。
方法: この経験報告は, LLMの生成, 精錬, 検証に使用される手法に着目し, とくに実証研究におけるデータ収集の文脈において, 従来の2つのレポジトリマイニング研究の知見を共有している。
結果: 本研究は, LLM使用率の向上, 出力品質の向上, 反復プロセスによるエラーの最小化, 異なるLLMの比較が可能なチェックリストからなる,PRIMES(Prompt Refinement and Insights for Mining Empirical Software repository)というフレームワークを作成した。
また,モデル結果を追跡する機構を実装することで再現性の重要性を強調した。
結論:PRIMESの標準化により,LPMを用いた研究の信頼性と再現性が向上することが示唆された。
この研究は最終的に、LLMをワークフローに統合する際の幻覚、モデルバイアス、コスト効率といった課題に対処するためのさらなる研究を求めている。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - CoMMIT: Coordinated Instruction Tuning for Multimodal Large Language Models [68.64605538559312]
本稿では,MLLM命令のチューニングを理論的・経験的両面から解析する。
そこで本研究では,学習バランスを定量的に評価する尺度を提案する。
さらに,MLLMの生成分布の更新を促進する補助的損失正規化手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T23:18:55Z) - Automated Commit Message Generation with Large Language Models: An Empirical Study and Beyond [24.151927600694066]
コミットメッセージ生成(CMG)アプローチは、与えられたコード差分に基づいてコミットメッセージを自動的に生成することを目的としている。
本稿では,Large Language Models (LLMs) を用いて高品質なコミットメッセージの生成にどの程度の期間を費やしてきたかを調べるための,最初の包括的な実験を行う。
論文 参考訳(メタデータ) (2024-04-23T08:24:43Z) - Characterization of Large Language Model Development in the Datacenter [55.9909258342639]
大きな言語モデル(LLM)は、いくつかの変換タスクにまたがって素晴らしいパフォーマンスを示している。
しかし,大規模クラスタ資源を効率よく利用してLCMを開発することは容易ではない。
我々は,GPUデータセンタAcmeから収集した6ヶ月のLDM開発ワークロードの詳細な評価を行った。
論文 参考訳(メタデータ) (2024-03-12T13:31:14Z) - Towards Modeling Learner Performance with Large Language Models [7.002923425715133]
本稿では,LLMのパターン認識とシーケンスモデリング機能が,知識追跡の領域にまで拡張できるかどうかを検討する。
ゼロショットプロンプト(ゼロショットプロンプト)とモデル微調整(モデル微調整)の2つの手法と,既存のLLM以外の知識追跡手法を比較した。
LLMベースのアプローチは最先端のパフォーマンスを達成しないが、微調整のLLMは素早いベースラインモデルの性能を上回り、標準的なベイズ的知識追跡手法と同等に機能する。
論文 参考訳(メタデータ) (2024-02-29T14:06:34Z) - LLM Inference Unveiled: Survey and Roofline Model Insights [62.92811060490876]
大規模言語モデル(LLM)推論は急速に進化しており、機会と課題のユニークなブレンドを提示している。
本調査は, 研究状況を要約するだけでなく, 屋上モデルに基づく枠組みを導入することによって, 従来の文献レビューから際立っている。
このフレームワークは、ハードウェアデバイスにLSMをデプロイする際のボトルネックを特定し、実用上の問題を明確に理解する。
論文 参考訳(メタデータ) (2024-02-26T07:33:05Z) - Breaking the Silence: the Threats of Using LLMs in Software Engineering [12.368546216271382]
大規模言語モデル(LLM)は、ソフトウェア工学(SE)コミュニティ内で大きな注目を集めています。
本稿では,LSMに基づく研究の有効性に対する潜在的な脅威について,オープンな議論を開始する。
論文 参考訳(メタデータ) (2023-12-13T11:02:19Z) - Reflection-Tuning: Data Recycling Improves LLM Instruction-Tuning [79.32236399694077]
トレーニングセットの低品質データは、通常、チューニングのチューニングに有害である。
我々は「反射チューニング」と呼ばれる新しい手法を提案する。
このアプローチでは、オラクルLSMを使用して、データ内の命令や応答の質を検査し、向上することで、元のトレーニングデータをリサイクルする。
論文 参考訳(メタデータ) (2023-10-18T05:13:47Z) - On Learning to Summarize with Large Language Models as References [101.79795027550959]
大型言語モデル (LLM) は、一般的な要約データセットにおける元の参照要約よりも人間のアノテーションに好まれる。
より小さなテキスト要約モデルに対するLLM-as-reference学習設定について検討し,その性能が大幅に向上するかどうかを検討する。
論文 参考訳(メタデータ) (2023-05-23T16:56:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。