Confidence Estimation for LLM-Based Dialogue State Tracking
- URL: http://arxiv.org/abs/2409.09629v2
- Date: Sat, 21 Sep 2024 13:11:11 GMT
- Title: Confidence Estimation for LLM-Based Dialogue State Tracking
- Authors: Yi-Jyun Sun, Suvodip Dey, Dilek Hakkani-Tur, Gokhan Tur,
- Abstract summary: Estimation of a model's confidence on its outputs is critical for Conversational AI systems based on large language models (LLMs)
We provide an exhaustive exploration of methods, including approaches proposed for open- and closed-weight LLMs.
Our findings suggest that fine-tuning open-weight LLMs can result in enhanced AUC performance, indicating better confidence score calibration.
- Score: 9.305763502526833
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimation of a model's confidence on its outputs is critical for Conversational AI systems based on large language models (LLMs), especially for reducing hallucination and preventing over-reliance. In this work, we provide an exhaustive exploration of methods, including approaches proposed for open- and closed-weight LLMs, aimed at quantifying and leveraging model uncertainty to improve the reliability of LLM-generated responses, specifically focusing on dialogue state tracking (DST) in task-oriented dialogue systems (TODS). Regardless of the model type, well-calibrated confidence scores are essential to handle uncertainties, thereby improving model performance. We evaluate four methods for estimating confidence scores based on softmax, raw token scores, verbalized confidences, and a combination of these methods, using the area under the curve (AUC) metric to assess calibration, with higher AUC indicating better calibration. We also enhance these with a self-probing mechanism, proposed for closed models. Furthermore, we assess these methods using an open-weight model fine-tuned for the task of DST, achieving superior joint goal accuracy (JGA). Our findings also suggest that fine-tuning open-weight LLMs can result in enhanced AUC performance, indicating better confidence score calibration.
Related papers
- Self-Consistency of the Internal Reward Models Improves Self-Rewarding Language Models [63.116041268654705]
We find that different internal reward models within the same Large Language Models often generate inconsistent preferences.
This inconsistency raises concerns about the reliability of self-generated preference data, hinders overall alignment performance, and highlights the need for further research.
We propose Self-Consistent Internal Rewards (SCIR), a novel framework designed to enhance consistency among internal reward models during training.
arXiv Detail & Related papers (2025-02-13T03:15:31Z) - Self-Improvement in Language Models: The Sharpening Mechanism [70.9248553790022]
We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening.
Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training.
We analyze two natural families of self-improvement algorithms based on SFT and RLHF.
arXiv Detail & Related papers (2024-12-02T20:24:17Z) - On Calibration of LLM-based Guard Models for Reliable Content Moderation [27.611237252584402]
Large language models (LLMs) pose significant risks due to the potential for generating harmful content or users attempting to evade guardrails.
Existing studies have developed LLM-based guard models designed to moderate the input and output of threat LLMs.
However, limited attention has been given to the reliability and calibration of such guard models.
arXiv Detail & Related papers (2024-10-14T12:04:06Z) - Attribute Controlled Fine-tuning for Large Language Models: A Case Study on Detoxification [76.14641982122696]
We propose a constraint learning schema for fine-tuning Large Language Models (LLMs) with attribute control.
We show that our approach leads to an LLM that produces fewer inappropriate responses while achieving competitive performance on benchmarks and a toxicity detection task.
arXiv Detail & Related papers (2024-10-07T23:38:58Z) - Self-Evolutionary Large Language Models through Uncertainty-Enhanced Preference Optimization [9.618391485742968]
Iterative preference optimization has recently become one of the de-facto training paradigms for large language models (LLMs)
We present an uncertainty-enhanced textbfPreference textbfOptimization framework to make the LLM self-evolve with reliable feedback.
Our framework substantially alleviates the noisy problem and improves the performance of iterative preference optimization.
arXiv Detail & Related papers (2024-09-17T14:05:58Z) - Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
Black-box large language models (LLMs) are increasingly deployed in various environments.
LLMs often exhibit overconfidence, leading to potential risks and misjudgments.
We propose a novel method, textitAtypical presentations Recalibration, which leverages atypical presentations to adjust the model's confidence estimates.
arXiv Detail & Related papers (2024-09-05T03:45:35Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
We show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead.
We also investigate the mechanisms that enable reliable uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators.
arXiv Detail & Related papers (2024-06-12T16:41:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Confidence Under the Hood: An Investigation into the Confidence-Probability Alignment in Large Language Models [14.5291643644017]
We introduce the concept of Confidence-Probability Alignment.
We probe the alignment between models' internal and expressed confidence.
Among the models analyzed, OpenAI's GPT-4 showed the strongest confidence-probability alignment.
arXiv Detail & Related papers (2024-05-25T15:42:04Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - PACE-LM: Prompting and Augmentation for Calibrated Confidence Estimation
with GPT-4 in Cloud Incident Root Cause Analysis [17.362895895214344]
Large language models (LLMs) are used to help humans identify the root causes of cloud incidents.
We propose to perform confidence estimation for the predictions to help on-call engineers make decisions on whether to adopt the model prediction.
We show that our method is able to produce calibrated confidence estimates for predicted root causes, validate the usefulness of retrieved historical data and the prompting strategy.
arXiv Detail & Related papers (2023-09-11T21:24:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.