On Calibration of LLM-based Guard Models for Reliable Content Moderation
- URL: http://arxiv.org/abs/2410.10414v1
- Date: Mon, 14 Oct 2024 12:04:06 GMT
- Title: On Calibration of LLM-based Guard Models for Reliable Content Moderation
- Authors: Hongfu Liu, Hengguan Huang, Hao Wang, Xiangming Gu, Ye Wang,
- Abstract summary: Large language models (LLMs) pose significant risks due to the potential for generating harmful content or users attempting to evade guardrails.
Existing studies have developed LLM-based guard models designed to moderate the input and output of threat LLMs.
However, limited attention has been given to the reliability and calibration of such guard models.
- Score: 27.611237252584402
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) pose significant risks due to the potential for generating harmful content or users attempting to evade guardrails. Existing studies have developed LLM-based guard models designed to moderate the input and output of threat LLMs, ensuring adherence to safety policies by blocking content that violates these protocols upon deployment. However, limited attention has been given to the reliability and calibration of such guard models. In this work, we empirically conduct comprehensive investigations of confidence calibration for 9 existing LLM-based guard models on 12 benchmarks in both user input and model output classification. Our findings reveal that current LLM-based guard models tend to 1) produce overconfident predictions, 2) exhibit significant miscalibration when subjected to jailbreak attacks, and 3) demonstrate limited robustness to the outputs generated by different types of response models. Additionally, we assess the effectiveness of post-hoc calibration methods to mitigate miscalibration. We demonstrate the efficacy of temperature scaling and, for the first time, highlight the benefits of contextual calibration for confidence calibration of guard models, particularly in the absence of validation sets. Our analysis and experiments underscore the limitations of current LLM-based guard models and provide valuable insights for the future development of well-calibrated guard models toward more reliable content moderation. We also advocate for incorporating reliability evaluation of confidence calibration when releasing future LLM-based guard models.
Related papers
- Confidence Estimation for LLM-Based Dialogue State Tracking [9.305763502526833]
Estimation of a model's confidence on its outputs is critical for Conversational AI systems based on large language models (LLMs)
We provide an exhaustive exploration of methods, including approaches proposed for open- and closed-weight LLMs.
Our findings suggest that fine-tuning open-weight LLMs can result in enhanced AUC performance, indicating better confidence score calibration.
arXiv Detail & Related papers (2024-09-15T06:44:26Z) - Enhancing Healthcare LLM Trust with Atypical Presentations Recalibration [20.049443396032423]
Black-box large language models (LLMs) are increasingly deployed in various environments.
LLMs often exhibit overconfidence, leading to potential risks and misjudgments.
We propose a novel method, textitAtypical presentations Recalibration, which leverages atypical presentations to adjust the model's confidence estimates.
arXiv Detail & Related papers (2024-09-05T03:45:35Z) - ShieldGemma: Generative AI Content Moderation Based on Gemma [49.91147965876678]
ShieldGemma is a suite of safety content moderation models built upon Gemma2.
Models provide robust, state-of-the-art predictions of safety risks across key harm types.
arXiv Detail & Related papers (2024-07-31T17:48:14Z) - Uncertainty is Fragile: Manipulating Uncertainty in Large Language Models [79.76293901420146]
Large Language Models (LLMs) are employed across various high-stakes domains, where the reliability of their outputs is crucial.
Our research investigates the fragility of uncertainty estimation and explores potential attacks.
We demonstrate that an attacker can embed a backdoor in LLMs, which, when activated by a specific trigger in the input, manipulates the model's uncertainty without affecting the final output.
arXiv Detail & Related papers (2024-07-15T23:41:11Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
We show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead.
We also investigate the mechanisms that enable reliable uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators.
arXiv Detail & Related papers (2024-06-12T16:41:31Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Unveiling the Misuse Potential of Base Large Language Models via In-Context Learning [61.2224355547598]
Open-sourcing of large language models (LLMs) accelerates application development, innovation, and scientific progress.
Our investigation exposes a critical oversight in this belief.
By deploying carefully designed demonstrations, our research demonstrates that base LLMs could effectively interpret and execute malicious instructions.
arXiv Detail & Related papers (2024-04-16T13:22:54Z) - Calibrating Large Language Models Using Their Generations Only [44.26441565763495]
APRICOT is a method to set confidence targets and train an additional model that predicts an LLM's confidence based on its textual input and output alone.
It is conceptually simple, does not require access to the target model beyond its output, does not interfere with the language generation, and has a multitude of potential usages.
We show how our approach performs competitively in terms of calibration error for white-box and black-box LLMs on closed-book question-answering to detect incorrect LLM answers.
arXiv Detail & Related papers (2024-03-09T17:46:24Z) - Calibrating Large Language Models with Sample Consistency [76.23956851098598]
We explore the potential of deriving confidence from the distribution of multiple randomly sampled model generations, via three measures of consistency.
Results show that consistency-based calibration methods outperform existing post-hoc approaches.
We offer practical guidance on choosing suitable consistency metrics for calibration, tailored to the characteristics of various LMs.
arXiv Detail & Related papers (2024-02-21T16:15:20Z) - Calibrating Long-form Generations from Large Language Models [34.72041258464477]
Large Language Models' (LLMs) confidence scores should align with the actual likelihood of its responses being correct.
Current confidence elicitation methods and calibration metrics rely on a binary true/false assessment of response correctness.
We introduce a unified calibration framework, in which both the correctness of the LLMs' responses and their associated confidence levels are treated as distributions across a range of scores.
arXiv Detail & Related papers (2024-02-09T17:00:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.